Active Reconfigurable Metamaterial Unit Cell Based on Non-Foster Elements

Abstract : Most research in metamaterials (artificially enhanced materials which modify the permittivity and permeability of electromagnetic wave propagation in order to steer EM waves in novel ways) involve passive metamaterials in a negative (permittivity and permeability less than zero) or plasmalike (permittivity and permeability between 0 and 1) regime. Unfortunately, negative and plasmalike metamaterials exhibit high dispersion of EM energy at some wavelengths, thus giving them a very narrow operating bandwidth. This research builds on the investigators previous report showing that it is possible to overcome these dispersion-energy constraints by incorporating non-Foster elements (active electronic circuits employing positive feedback), with the most important goal of the project to develop an experimental demonstrator of a reconfigurable active metamaterial unit cell that can be either double-positive or epsilon (permittivity) near zero (DPS-ENZ) or either doublepositive or mu (permeability) near zero (DPS-MNZ), with other goals being the increase of operating frequency to microwave region, development of negative inductance for MNZ/MENZ metamaterials, tunable non-Foster cells, and interfacing cells with free space for scattering applications such as cloaking. The project succeeds in understanding negative capacitance and its role in metamaterials, investigates the basic physics of negative non-Foster tank circuits, designs, simulates, and builds prototypes of active ultra-broadband ENZ unit cells as well as prototypes of negative-inductor MNZ unit cells.

[1]  S. Hrabar,et al.  Superluminal propagation in metamaterials: Anomalous dispersion versus non-Foster approach , 2013, 2013 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics.

[2]  S. Hrabar,et al.  From planar transmission-line-based cloak to volumetric cloak , 2013, 2013 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics.

[3]  S. Hrabar,et al.  Practical realization of broadband reconfigurable non-Foster ENZ /MNZ/DPS metamaterial , 2013, 2013 USNC-URSI Radio Science Meeting (Joint with AP-S Symposium).

[4]  S. Hrabar,et al.  Practical aspects of DB metasurfaces- a brief review , 2013, 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[5]  A. Toscano,et al.  Restoring the radiating performances of shortened horn antennas over a broad frequency range , 2013, 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[6]  S. Hrabar,et al.  On bandwidth of transmission-line-based and inclusion-based non-foster ENZ metamaterials , 2013, 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI).

[7]  J. Perruisseau-Carrier,et al.  Broadband Fabry-Pérot radiation based on non-foster cavity boundary , 2013 .

[8]  Igor Krois,et al.  Ultra-broadband simultaneous superluminal phase and group velocities in non-Foster epsilon-near-zero metamaterial , 2013 .

[9]  S. Hrabar,et al.  Numerical analysis of non-Foster-based leaky-wave antenna , 2012, Proceedings ELMAR-2012.

[10]  S. Hrabar,et al.  Numerical analysis of bandwidth of 2D cylindrical anisotropic EM cloaks , 2012, Proceedings ELMAR-2012.

[11]  S. Hrabar,et al.  Stability analysis of active broadband ENZ line , 2012, Proceedings ELMAR-2012.

[12]  S. Hrabar,et al.  Experimental verification of metamaterial-based DB unit cell , 2012, Proceedings ELMAR-2012.

[13]  S. Hrabar,et al.  Circuit-theory interpretation of optical multilayer ENZ metamaterial with enhanced bandwidth , 2012, Proceedings ELMAR-2012.

[14]  D. Segovia-Vargas,et al.  Stability of Non-Foster Reactive Elements for Use in Active Metamaterials and Antennas , 2012, IEEE Transactions on Antennas and Propagation.

[15]  S. Hrabar,et al.  Practical realization of isotropic RF replica of plasmonic sphere , 2012, 2012 6th European Conference on Antennas and Propagation (EUCAP).

[16]  S. Hrabar,et al.  New research directions in broadband active non-Foster RF metamaterials , 2012, 2012 6th European Conference on Antennas and Propagation (EUCAP).

[17]  S. Hrabar,et al.  Towards experimental investigation of metamaterial-based DB surface in waveguide environment , 2012, 2012 6th European Conference on Antennas and Propagation (EUCAP).

[18]  Igor Krois,et al.  Stability Analysis of Superluminal Metamaterial Transmission Line with Realistic Non-Foster Negative Capacitors , 2012 .

[19]  J. S. Colburn,et al.  Wideband Artificial Magnetic Conductors Loaded With Non-Foster Negative Inductors , 2011, IEEE Antennas and Wireless Propagation Letters.

[20]  Igor Krois,et al.  Negative capacitor paves the way to ultra-broadband metamaterials , 2011 .

[21]  Igor Krois,et al.  Investigation of basic physics of non-Foster negative capacitance in time domain , 2011, Proceedings ELMAR-2011.

[22]  Igor Krois,et al.  Broadband Epsilon-Near-Zero (ENZ) and Mu-Near-Zero (MNZ) Active Metamaterial , 2011 .

[23]  Silvio Hrabar,et al.  Investigation of stability of negative impedances for use in active metamaterials and antennas , 2011, Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP).

[24]  D. Sievenpiper,et al.  Superluminal Waveguides Based on Non-Foster Circuits for Broadband Leaky-Wave Antennas , 2011, IEEE Antennas and Wireless Propagation Letters.

[25]  Kari Halonen,et al.  CMOS Current Amplifiers: Speed versus Nonlinearity , 2010 .

[26]  Yang Hao,et al.  Stability of active magnetoinductive metamaterials , 2010 .

[27]  S. Hrabar,et al.  Basic concepts of active dispersionless metamaterial based on non-foster elements , 2010, 2010 Conference Proceedings ICECom, 20th International Conference on Applied Electromagnetics and Communications.

[28]  Derek Abbott,et al.  A Systemized View of Superluminal Wave Propagation , 2010, Proceedings of the IEEE.

[29]  Igor Krois,et al.  Towards active dispersionless ENZ metamaterial for cloaking applications , 2010 .

[30]  Keum-Su Song,et al.  Electrically small wire monopole antenna with Non-Foster impedance element , 2010, Proceedings of the Fourth European Conference on Antennas and Propagation.

[31]  P. S. Hall,et al.  Novel wide tunable dual-band reconfigurable chassis-antenna for future mobile terminals , 2010, Proceedings of the Fourth European Conference on Antennas and Propagation.

[32]  Damir Muha,et al.  Numerical and experimental investigation of basic properties of wire medium‐based shortened horn antennas , 2009 .

[33]  Sungho Lee,et al.  A 0.1-1 GHz CMOS Variable Gain Amplifier Using Wideband Negative Capacitance , 2009, IEICE Trans. Electron..

[34]  S. Sussman-Fort,et al.  Non-Foster Impedance Matching of Electrically-Small Antennas , 2009, IEEE Transactions on Antennas and Propagation.

[35]  T. Komljenovic,et al.  Time and frequency domain analysis of uniaxial multilayer cylinders used for invisible cloak realization , 2009, 2010 Conference Proceedings ICECom, 20th International Conference on Applied Electromagnetics and Communications.

[36]  R. Marqués,et al.  Experimental demonstration of a mu=-1 metamaterial lens for magnetic resonance imaging , 2008, 0810.1689.

[37]  S. Hrabar,et al.  Subwavelength Guiding of Electromagnetic Energy in Waveguide Filled with Anisotropic Mu-Negative Metamaterial , 2008 .

[38]  F. Bilotti,et al.  Plasmonic Metamaterial Cloaking at Optical Frequencies , 2008, IEEE Transactions on Nanotechnology.

[39]  C. Di Nallo,et al.  Small Wideband Antenna with non-Foster Loading Elements , 2007, 2007 International Conference on Electromagnetics in Advanced Applications.

[40]  Edgar Sanchez-Sinencio,et al.  Negative Impedance Circuit and Its Application to Inductorless Resonant Oscillators , 2007 .

[41]  Steven A. Cummer,et al.  An architecture for active metamaterial particles and experimental validation at RF , 2007 .

[42]  S. Tretyakov,et al.  Veselago Materials: What is Possible and Impossible about the Dispersion of the Constitutive Parameters , 2007, IEEE Antennas and Propagation Magazine.

[43]  S. Gharavi,et al.  Theory and application of gain-assisted periodically loaded transmission lines with negative or superluminal group delays , 2007, 2007 IEEE Antennas and Propagation Society International Symposium.

[44]  A. Perennec,et al.  Synthesis of Broadband Negative Group Delay Active Circuits , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[45]  David R. Smith,et al.  Metamaterial Electromagnetic Cloak at Microwave Frequencies , 2006, Science.

[46]  M. Wegener,et al.  Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial , 2006, Science.

[47]  S.E. Sussman-Fort,et al.  Non-Foster Impedance Matching for Transmit Applications , 2006, IEEE International Workshop on Antenna Technology Small Antennas and Novel Metamaterials, 2006..

[48]  Stephen E. Sussman-Fort,et al.  Matching network design using non‐Foster impedances , 2006 .

[49]  T. Itoh,et al.  Electromagnetic metamaterials : transmission line theory and microwave applications : the engineering approach , 2005 .

[50]  K. Balmain,et al.  Negative Refraction Metamaterials: Fundamental Principles and Applications , 2005 .

[51]  M. Mojahedi,et al.  Time- and frequency-domain measurements for an active negative group delay circuit , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[52]  N. Engheta,et al.  Achieving transparency with plasmonic and metamaterial coatings. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Z. Sipus,et al.  Waveguide miniaturization using uniaxial negative permeability metamaterial , 2005, IEEE Transactions on Antennas and Propagation.

[54]  S. Hrabar,et al.  Experimental investigation of subwavelength resonator based on backward-wave meta-material , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[55]  A. Grbic,et al.  Overcoming the diffraction limit with a planar left-handed transmission-line lens. , 2004, Physical review letters.

[56]  Sergei A. Tretyakov,et al.  An analytical model of metamaterials based on loaded wire dipoles , 2003 .

[57]  M. Mojahedi,et al.  Periodically loaded transmission line with effective negative refractive index and negative group velocity , 2003, IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450).

[58]  Sergei A. Tretyakov,et al.  Meta‐materials with wideband negative permittivity and permeability , 2001 .

[59]  B. Delacressonniere,et al.  Using a negative capacitance to increase the tuning range of a varactor diode in MMIC technology , 2001, 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No.01CH37157).

[60]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[61]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.

[62]  T. G. Kharina,et al.  The perfectly matched layer as a synthetic material with active inclusions , 2000 .

[63]  Stephen E. Sussman-Fort,et al.  Gyrator‐based biquad filters and negative impedance converters for microwaves , 1998 .

[64]  R. W. Zislkowski The design of Maxwellian absorbers for numerical boundary conditions and for practical applications using engineered artificial materials , 1997 .

[65]  R. W. Jackson,et al.  Criteria for the onset of oscillation in microwave circuits , 1992 .

[66]  D. Pozar Microwave Engineering , 1990 .

[67]  Gordon W. Roberts,et al.  The current conveyor: history, progress and new results , 1990 .

[68]  J. Faires Numerical Analysis , 1981 .

[69]  A. J. Bahr,et al.  Active Network Techniques for Improving Antenna Performance , 1977 .

[70]  Albert Kevin. Perry,et al.  Broadband antenna systems realized from active circuit conjugate impedance matching. , 1973 .

[71]  Edward G. Cristal,et al.  Microwave Active Network Synthesis , 1972 .

[72]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[73]  J.G. Linvill,et al.  Transistor Negative-Impedance Converters , 1953, Proceedings of the IRE.

[74]  S. Hrabar,et al.  Broadening of Cloaking Bandwidth by Passive and Active Techniques , 2014 .

[75]  S. Hrabar Active non-Foster Metamaterials: From Intriguing Background Physics to Real-world Application , 2012 .

[76]  J. S. Colburn,et al.  A Variable Negative-Inductance Integrated Circuit at UHF Frequencies , 2012, IEEE Microwave and Wireless Components Letters.

[77]  S. Hrabar,et al.  RF ENZ Dielectric Waveguide , 2012 .

[78]  Damir Muha,et al.  Practical Realization of DB Unit Cell , 2012 .

[79]  S. Hrabar Application of Wire Media in Antenna Technology , 2009 .

[80]  A. Kaya HIGH GAIN RECTANGULAR BROAD BAND MICROSTRIP ANTENNA WITH EMBEDDED NEGATIVE CAPACITOR AND CHIP RESISTOR , 2008 .

[81]  James T. Aberle,et al.  Antennas with Non-Foster Matching Networks , 2007, Antennas with Non-Foster Matching Networks.

[82]  Arto Hujanen,et al.  Bandwidth Limitations of Dipoles Matched with Non-Foster Impedances , 2007 .

[83]  S. Hrabar,et al.  Reply to "Comments on 'Waveguide Miniaturization Using Uniaxial Negative Permeability Metamaterial'" , 2007 .

[84]  N. Engheta,et al.  Metamaterials: Physics and Engineering Explorations , 2006 .

[85]  David Eyllier Outils de Synthèse Originaux pour la Conception de Dispositifs Actifs Microonde Intégrés Application au Filtrage et à l'Amplification Faible Bruit , 2006 .

[86]  David Eyllier Outils de Synthèse Originaux pour la Conception de Dispositifs Actifs Microonde Intégrés Application au Filtrage et à l'Amplification Faible Bruit , 2006 .

[87]  Abdul Qadir,et al.  REALIZATION AND STUDY OF CURRENT-MODE FILTERS AND OSCILLATORS FOR INTEGRATED CIRCUIT IMPLEMENTATION , 2003 .

[88]  R. Ziolkowski,et al.  Theoretical study of synthetic bianisotropic materials , 1998 .