Guarded Open Answer Set Programming

Open answer set programming (OASP) is an extension of answer set programming where one may ground a program with an arbitrary superset of the program's constants. We define a fixed point logic (FPL) extension of Clark's completion such that open answer sets correspond to models of FPL formulas and identify a syntactic subclass of programs, called (loosely) guarded programs. Whereas reasoning with general programs in OASP is undecidable, the FPL translation of (loosely) guarded programs falls in the decidable (loosely) guarded fixed point logic (μ(L)GF). Moreover, we reduce normal closed ASP to loosely guarded OASP, enabling a characterization of an answer set semantics by μLGF formulas. Finally, we relate guarded OASP to Datalog LITE, thus linking an answer set semantics to a semantics based on fixed point models of extended stratified Datalog programs. From this correspondence, we deduce 2-EXPTIME-completeness of satisfiability checking w.r.t. (loosely) guarded programs.

[1]  David Harel,et al.  Horn clauses and the fixpoint query hierarchy , 1982, PODS.

[2]  Riccardo Rosati,et al.  On the decidability and complexity of integrating ontologies and rules , 2005, J. Web Semant..

[3]  Georg Gottlob,et al.  Complexity and expressive power of logic programming , 2001, CSUR.

[4]  Moshe Y. Vardi Reasoning about The Past with Two-Way Automata , 1998, ICALP.

[5]  J. W. LLOYD,et al.  Making Prolog more Expressive , 1984, J. Log. Program..

[6]  Stijn Heymans,et al.  Nonmonotonic Ontological and Rule-Based Reasoning with Extended Conceptual Logic Programs , 2005, ESWC.

[7]  Alan L. Rector,et al.  Untangling taxonomies and relationships: personal and practical problems in loosely coupled development of large ontologies , 2001, K-CAP '01.

[8]  Francesco Scarcello,et al.  Disjunctive Stable Models: Unfounded Sets, Fixpoint Semantics, and Computation , 1997, Inf. Comput..

[9]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[10]  Boris Motik,et al.  Query Answering for OWL-DL with Rules , 2004, SEMWEB.

[11]  Jan Hladik,et al.  A Translation of Looping Alternating Automata into Description Logics , 2003, CADE.

[12]  Teodor C. Przymusinski,et al.  Semantic Issues in Deductive Databases and Logic Programs , 1990 .

[13]  Chiaki Sakama,et al.  Negation as Failure in the Head , 1998, J. Log. Program..

[14]  John S. Schlipf,et al.  Commonsense Axiomatizations for Logic Programs , 1993, J. Log. Program..

[15]  Marvin Minsky,et al.  A framework for representing knowledge , 1974 .

[16]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .

[17]  Stijn Heymans,et al.  Integrating Description Logics and Answer Set Programming , 2003, PPSWR.

[18]  Valentin Goranko,et al.  Logic in Computer Science: Modelling and Reasoning About Systems , 2007, J. Log. Lang. Inf..

[19]  Ilkka Niemelä,et al.  The Smodels System , 2001, LPNMR.

[20]  H. Lan,et al.  SWRL : A semantic Web rule language combining OWL and ruleML , 2004 .

[21]  Dexter Kozen,et al.  Results on the Propositional µ-Calculus , 1982, ICALP.

[22]  David E. Muller,et al.  Alternating Automata on Infinite Trees , 1987, Theor. Comput. Sci..

[23]  Michael Uschold,et al.  Ontologies: principles, methods and applications , 1996, The Knowledge Engineering Review.

[24]  Riccardo Rosati,et al.  Towards expressive KR systems integrating datalog and description logics: preliminary report , 1999, Description Logics.

[25]  Dirk Vermeir,et al.  Preferred Answer Sets for Ordered Logic Programs , 2002, JELIA.

[26]  Tommi Syrjänen,et al.  Cardinality Constraint Programs , 2004, JELIA.

[27]  Robert A. Kowalski,et al.  The Semantics of Predicate Logic as a Programming Language , 1976, JACM.

[28]  Kenneth A. Ross,et al.  The well-founded semantics for general logic programs , 1991, JACM.

[29]  Ilkka Niemelä,et al.  Efficient Implementation of the Well-founded and Stable Model Semantics , 1996, JICSLP.

[30]  Matthew L. Ginsberg,et al.  Readings in Nonmonotonic Reasoning , 1987, AAAI 1987.

[31]  Moshe Y. Vardi Why is Modal Logic So Robustly Decidable? , 1996, Descriptive Complexity and Finite Models.

[32]  Johan van Benthem,et al.  Modal Languages and Bounded Fragments of Predicate Logic , 1998, J. Philos. Log..

[33]  Michael Mendler,et al.  The NASA STI Program Office provides , 2000 .

[34]  Michael Gelfond,et al.  Reasoning on Open Domains , 1993, LPNMR.

[35]  David Pearce,et al.  Strongly equivalent logic programs , 2001, ACM Trans. Comput. Log..

[36]  A. Prasad Sistla,et al.  The complexity of propositional linear temporal logics , 1982, STOC '82.

[37]  Pierre Wolper,et al.  Synthesis of Communicating Processes from Temporal Logic Specifications , 1981, TOPL.

[38]  Serge Abiteboul,et al.  Foundations of Databases , 1994 .

[39]  Vladimir Lifschitz,et al.  Answer set programming and plan generation , 2002, Artif. Intell..

[40]  Ian Horrocks,et al.  Ontology Reasoning in the SHOQ(D) Description Logic , 2001, IJCAI.

[41]  Stijn Heymans,et al.  Semantic Web Reasoning with Conceptual Logic Programs , 2004, RuleML.

[42]  Stephan Tobies,et al.  Complexity results and practical algorithms for logics in knowledge representation , 2001, ArXiv.

[43]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[44]  Reijo Sulonen,et al.  Representing Configuration Knowledge With Weight Constraint Rules , 2001, Answer Set Programming.

[45]  Dirk Vermeir,et al.  Ordered Diagnosis , 2003, LPAR.

[46]  Arthur B. Markman,et al.  Knowledge Representation , 1998 .

[47]  Igor Walukiewicz,et al.  Guarded fixed point logic , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[48]  Edmund M. Clarke,et al.  Using Branching Time Temporal Logic to Synthesize Synchronization Skeletons , 1982, Sci. Comput. Program..

[49]  Robert Meersman,et al.  Formal Ontology Engineering in the DOGMA Approach , 2002, OTM.

[50]  Kenneth Kunen,et al.  Negation in Logic Programming , 1987, J. Log. Program..

[51]  Georg Gottlob,et al.  Datalog LITE: a deductive query language with linear time model checking , 2002, TOCL.

[52]  David Pearce,et al.  A New Logical Characterisation of Stable Models and Answer Sets , 1996, NMELP.

[53]  Erich Grädel,et al.  On the Restraining Power of Guards , 1999, Journal of Symbolic Logic.

[54]  Terrance Swift Deduction in Ontologies via Answer Set Programming , 2004 .

[55]  Stijn Heymans,et al.  Integrating Semantic Web Reasoning and Answer Set Programming , 2003, Answer Set Programming.

[56]  David Pearce,et al.  Towards a First Order Equilibrium Logic for Nonmonotonic Reasoning , 2004, JELIA.

[57]  Wolfgang Faber,et al.  Pushing Goal Derivation in DLP Computations , 1999, LPNMR.

[58]  Chitta Baral,et al.  Knowledge Representation, Reasoning and Declarative Problem Solving , 2003 .

[59]  Fangzhen Lin,et al.  ASSAT: computing answer sets of a logic program by SAT solvers , 2002, Artif. Intell..

[60]  Alon Y. Halevy,et al.  CARIN: A Representation Language Combining Horn Rules and Description Logics , 1996, ECAI.

[61]  J. Benthem DYNAMIC BITS AND PIECES , 1997 .

[62]  Joohyung Lee,et al.  Loop Formulas for Disjunctive Logic Programs , 2003, ICLP.

[63]  Stijn Heymans,et al.  Integrating ontology languages and answer set programming , 2003, 14th International Workshop on Database and Expert Systems Applications, 2003. Proceedings..

[64]  Ulrike Sattler,et al.  Mary Likes all Cats , 2000, Description Logics.

[65]  Stijn Heymans,et al.  Guarded Open Answer Set Programming with Generalized Literals , 2006, FoIKS.

[66]  John S. Schlipf,et al.  Complexity and undecidability results for logic programming , 1995, Annals of Mathematics and Artificial Intelligence.

[67]  Dan Brickley,et al.  Resource Description Framework (RDF) Model and Syntax Specification , 2002 .

[68]  Krzysztof R. Apt,et al.  Logic Programming , 1990, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[69]  Ilkka Niemelä,et al.  Developing a Declarative Rule Language for Applications in Product Configuration , 1999, PADL.

[70]  Ian Horrocks,et al.  Practical Reasoning for Expressive Description Logics , 1999, LPAR.

[71]  Stijn Heymans,et al.  A Defeasible Ontology Language , 2002, OTM.

[72]  Tommi Syrjänen Omega-Restricted Logic Programs , 2001, LPNMR.