Convex Relaxations for Subset Selection

We use convex relaxation techniques to produce lower bounds on the optimal value of subset selection problems and generate good approximate solutions. We then explicitly bound the quality of these relaxations by studying the approximation ratio of sparse eigenvalue relaxations. Our results are used to improve the performance of branch-and-bound algorithms to produce exact solutions to subset selection problems.

[1]  Alexandre d'Aspremont,et al.  Optimal Solutions for Sparse Principal Component Analysis , 2007, J. Mach. Learn. Res..

[2]  N. Meinshausen,et al.  Discussion: A tale of three cousins: Lasso, L2Boosting and Dantzig , 2007, 0803.3134.

[3]  Michael I. Jordan,et al.  A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, SIAM Rev..

[4]  David J. Hand,et al.  Branch and Bound in Statistical Data Analysis , 1981 .

[5]  Terence Tao,et al.  The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.

[6]  Robert W. Wilson,et al.  Regressions by Leaps and Bounds , 2000, Technometrics.

[7]  Michael Elad,et al.  Image Denoising Via Sparse and Redundant Representations Over Learned Dictionaries , 2006, IEEE Transactions on Image Processing.

[8]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[9]  Keinosuke Fukunaga,et al.  A Branch and Bound Algorithm for Feature Subset Selection , 1977, IEEE Transactions on Computers.

[10]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[11]  U. Feige,et al.  On the Densest K-subgraph Problem , 1997 .

[12]  U. Feige,et al.  On the densest k-subgraph problems , 1997 .

[13]  Michael Elad,et al.  Learning Multiscale Sparse Representations for Image and Video Restoration , 2007, Multiscale Model. Simul..

[14]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[15]  Guy Kortsarz,et al.  On choosing a dense subgraph , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[16]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[17]  Uriel Feige,et al.  The Dense k -Subgraph Problem , 2001, Algorithmica.

[18]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[19]  B. Moghaddam,et al.  Sparse regression as a sparse eigenvalue problem , 2008, 2008 Information Theory and Applications Workshop.

[20]  D. Donoho,et al.  Neighborliness of randomly projected simplices in high dimensions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Michael Langberg,et al.  Approximation Algorithms for Maximization Problems Arising in Graph Partitioning , 2001, J. Algorithms.