Joint Vehicle Trajectory and Model Parameter Estimation Using Road Side Sensors

This paper shows how a particle smoother-based system identification method can be applied for estimating the trajectory of road vehicles. As sensors, a combination of an accelerometer measuring the road surface vibrations and a magnetometer measuring magnetic disturbances mounted on the side of the road are considered. First, sensor models describing the measurements of the two sensors are introduced. It is shown that these depend on unknown, static parameters that have to be considered in the estimation. Second, the sensor models are combined with a two-dimensional constant velocity motion model. Third, the system identification algorithm is introduced which iteratively runs a Rao-Blackwellized particle smoother to estimate the vehicle trajectory followed by an expectation-maximization step to estimate the parameters. Finally, the method is applied to both simulation and measurement data. It is found that the method works well in general and some issues when real data is considered are identified as future work.

[1]  LI X.RONG,et al.  Survey of maneuvering target tracking. Part I. Dynamic models , 2003 .

[2]  Juha Röning,et al.  Magnetic field-based SLAM method for solving the localization problem in mobile robot floor-cleaning task , 2011, 2011 15th International Conference on Advanced Robotics (ICAR).

[3]  Sailes K. Sengijpta Fundamentals of Statistical Signal Processing: Estimation Theory , 1995 .

[4]  Simo Särkkä,et al.  Bayesian Filtering and Smoothing , 2013, Institute of Mathematical Statistics textbooks.

[5]  Fredrik Gustafsson,et al.  Magnetometer Modeling and Validation for Tracking Metallic Targets , 2014, IEEE Transactions on Signal Processing.

[6]  Thomas B. Schön,et al.  MEMS-based inertial navigation based on a magnetic field map , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[7]  Nicholas G. Polson,et al.  Practical filtering with sequential parameter learning , 2008 .

[8]  Roland Hostettler,et al.  The Pavement as a Waveguide: Modeling, System Identification, and Parameter Estimation , 2014, IEEE Transactions on Instrumentation and Measurement.

[9]  Mohammed Khider,et al.  Simultaneous Localization and Mapping for pedestrians using distortions of the local magnetic field intensity in large indoor environments , 2013, International Conference on Indoor Positioning and Indoor Navigation.

[10]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[11]  Victor C. M. Leung,et al.  Unscented Rauch--Tung--Striebel Smoother , 2008, IEEE Transactions on Automatic Control.

[12]  J. D. Robson,et al.  The description of road surface roughness , 1973 .

[13]  Roland Hostettler,et al.  Extended Kalman filter for vehicle tracking using road surface vibration measurements , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[14]  Geir Storvik,et al.  Particle filters for state-space models with the presence of unknown static parameters , 2002, IEEE Trans. Signal Process..

[15]  Peter Andren,et al.  Power spectral density approximations of longitudinal road profiles , 2006 .

[16]  Mónica F. Bugallo,et al.  Density assisted particle filters for state and parameter estimation , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[17]  Aurélien Garivier,et al.  Sequential Monte Carlo smoothing for general state space hidden Markov models , 2011, 1202.2945.

[18]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[19]  A. Doucet,et al.  On-Line Parameter Estimation in General State-Space Models , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[20]  Jürgen Altmann,et al.  Acoustic and seismic signals of heavy military vehicles for co-operative verification , 2004 .

[21]  C. Striebel,et al.  On the maximum likelihood estimates for linear dynamic systems , 1965 .

[22]  A. Doucet,et al.  Parameter estimation in general state-space models using particle methods , 2003 .

[23]  Vesselin P. Jilkov,et al.  Survey of maneuvering target tracking: III. Measurement models , 2001 .

[24]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[25]  Ben Bruscella,et al.  Analysis of Road Surface Profiles , 1999 .

[26]  Thomas B. Schön,et al.  Marginalized particle filters for mixed linear/nonlinear state-space models , 2005, IEEE Transactions on Signal Processing.

[27]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[28]  X. R. Li,et al.  A Survey of Maneuvering Target Tracking—Part III: Measurement Models , 2001 .

[29]  Fredrik Lindsten,et al.  Adaptive stopping for fast particle smoothing , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[30]  Fredrik Gustafsson,et al.  Particle filters for positioning, navigation, and tracking , 2002, IEEE Trans. Signal Process..

[31]  Patrick Robertson,et al.  Magnetic maps of indoor environments for precise localization of legged and non-legged locomotion , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  Brett Ninness,et al.  Maximum-likelihood parameter estimation of bilinear systems , 2005, IEEE Transactions on Automatic Control.

[33]  M. Birsan Non-linear Kalman filters for tracking a magnetic dipole , 2004 .

[34]  Sirish L. Shah,et al.  Comparison of Expectation-Maximization based parameter estimation using Particle Filter, Unscented and Extended Kalman Filtering techniques , 2009 .

[35]  N. Chopin A sequential particle filter method for static models , 2002 .

[36]  Thomas B. Schön,et al.  System identification of nonlinear state-space models , 2011, Autom..

[37]  Simon J. Godsill,et al.  Rao-Blackwellized particle smoothers for mixed linear/nonlinear state-space models , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[38]  Simo Srkk,et al.  Bayesian Filtering and Smoothing , 2013 .