Current Status and Future Prospects of the SNO+ Experiment

SNO+is a large liquid scintillator-based experiment located 2 km underground at SNOLAB, Sudbury,Canada. It reuses the Sudbury Neutrino Observatory detector, consisting of a 12m diameter acrylic vessel which will be filled with about 780 tonnes of ultra-pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of SNO+ is a search for the neutrinoless double-beta decay (0BB) of 130Te. In Phase I, the detector will be loaded with 0.3% natural tellurium, corresponding to nearly 800 kg of 130Te, with an expected effective Majorana neutrino mass sensitivity in the region of 55–133meV, just above the inverted mass hierarchy. Recently, the possibility of deploying up to ten times more natural tellurium has been investigated, which would enable SNO+ to achieve sensitivity deep into the parameter space for the inverted neutrino mass hierarchy in the future. Additionally, SNO+ aims to measure reactor antineutrino oscillations, low energy solar neutrinos, and geoneutrinos, to be sensitive to supernova neutrinos, and to search for exotic physics. A first phase with the detector filled with water will begin soon, with the scintillator phase expected to start after a few months of water data taking. The 01BB Phase I is foreseen for 2017.

Ny | Il | Coimbra | Davis | Seattle | Astrophysics | Portugal | Berkeley | Oxford | Lisboa | Canada. | Astronomy | Edmonton | Brighton | London | T. U. Dresden | Snolab | Liverpool | Upton | Savannah | Lancaster | Physics | Sheffield | Kingston | Universidad Nacional Aut'onoma de M'exico | Universidade de Lisboa | H Germany | Bc | Usa | U. Washington | U. Pennsylvania | Philadelphia. | U. California | UK. | D. D. F'isica | S. O. Physics | on | I. D. F'isica | B. N. Laboratory | The Enrico Fermi Institute | Chicago. | E. O’Sullivan | J. Tatar | Center for High Energy Physics | U. Alberta | U. Sheffield | P. Keener | A. Maio | J. Maneira | J. Tseng | R. Berg | O. Chkvorets | Queen Mary | M. Walker | U. Oxford | A. Reichold | E. Blucher | Physics Department | P. Jones | B. Land | M. Chen | E. Caden | J. Rumleskie | T. Sonley | M. Strait | C. Virtue | C. Miller | S. Manecki | Queen's University | F. Ciencias | Ca | Dresden. | U. Sussex | M'exico. | R. Deen | S. Peeters | S. Seibert | A. McDonald | C. Krauss | I. Lawson | M. Yeh | R. Helmer | X. Dai | N. Jelley | N. McCauley | L. Kormos | B. Cleveland | C. Kraus | E. Beier | P. Harvey | W. Heintzelman | S. Biller | A. Hallin | M. Schwendener | H. Tseung | P. Skensved | F. Duncan | G. Lefeuvre | E. Falk | J. Hartnell | C. Jones | R. Svoboda | R. Ford | C. Jillings | V. Novikov | F. Lodovico | L. University | U. Liverpool | Triumf | S. Hans | R. Rosero | C. Grant | S. Grullon | J. Kaspar | J. Klein | H. O'Keeffe | N. Tolich | N. Barros | F. Descamps | T. Iida | K. Singh | J. Mcmillan | S. Quirk | D. Chauhan | E. Guillian | G. O. Gann | G. Prior | J. Secrest | J. Rose | L. Laboratory | D. Ścisłowski | M. Mottram | V. Lozza | Wa | K. Kamdin | X. Liu | M. Parnell | A. Mastbaum | J. Sinclair | C. Jackson | S. Andringa | L. Segui | M. Schumaker | R. Knapik | J. Walker | J. Dunger | E. V'azquez-J'auregui | D. Auty | N. Fatemighomi | P. Gorel | S. Langrock | J. Lidgard | R. Stainforth | M. Stringer | Nuclear Science Division | E. Marzec | J. Hu | R. White | University of London | Y. Mohan | B. Krosigk | E. Leming | M. Askins | A. Bialek | R. Bonventre | E. Callaghan | J. Caravaca | M. Depatie | D. Hallman | B. Hreljac | J. Hu | T. Kaptanoglu | P. Khaghani | I. Lam | A. Latorre | Y. Liu | S. Maguire | P. Mekarski | T. Pershing | P. Rost | L. Tian | E. Arushanova | S. Asahi | A. R. Back | Z. Barnard | D. Braid | J. Carvalho | L. Cavalli | K. Clark | I. Coulter | D. Cressy | C. Darrach | N. Duhaime | M. Hedayatipour | L. Kippenbrock | J. Kofron | K. Labe | C. Lan | K. Majumdar | E. Mony | Z. Petriw | J. Prouty | A. Robertson | M. Seddighin | T. Shantz | T. Shokair | L. Sibley | O. Wasalski | J. Waterfield | T. Winchester | T. Zhao | E. Physics | Vancouver. | Sudbury | Laurentian University | Ab | Vt | Ga | D. Physics | Pa | J. Wilson | A. Wright | Falmer | Universidade de Coimbra | S. Korte | T. Chicago | M. D.F. | E. O'Sullivan | C. Department | Laborat'orio de Instrumentaccao e F'isica Experimental de Part'iculas | B. Davis-purcell | A. Soerensen | K. Z. L. D. I. E. F. E. Part'iculas | The Denys Wilkinson Building | N. University | Northfield | Institut fur Kern- und Teilchenphysik | A. A. S. University | K. Clark

[1]  B. Krosigk Measurement of proton and $\alpha$ particle quenching in LAB based scintillators and determination of spectral sensitivities to supernova neutrinos in the SNO+ detector , 2016 .

[2]  S. Lamoreaux,et al.  Experimental Searches for the Axion and Axion-Like Particles , 2015, 1602.00039.

[3]  O. Chkvorets,et al.  Purification of telluric acid for SNO+ neutrinoless double-beta decay search , 2015 .

[4]  J. Engel Nuclear matrix elements for double-β decay , 2015, 1511.00074.

[5]  R. J. Ford A Scintillator Purification Plant and Fluid Handling System for SNO , 2015, 1506.08746.

[6]  E. Arushanova,et al.  Probing Neutrinoless Double Beta Decay with SNO , 2015, 1505.00247.

[7]  J. Hyvärinen,et al.  Nuclear matrix elements for $0\nu\beta\beta$ decays with light or heavy Majorana-neutrino exchange , 2015 .

[8]  T. U. Dresden,et al.  Cosmogenic activation of a natural tellurium target , 2014, 1411.5947.

[9]  J. Hyvärinen,et al.  Nuclear matrix elements for 0νββ decays with light or heavy Majorana-neutrino exchange , 2015 .

[10]  Thomas W. Wieting Nonstandard Models , 2015 .

[11]  A. Maio,et al.  The calibration system for the photomultiplier array of the SNO+ experiment , 2014, 1411.4830.

[12]  L. Cadonati,et al.  Neutrinos from the primary proton–proton fusion process in the Sun , 2014, Nature.

[13]  J. Beeman,et al.  Search for axioelectric effect of solar axions using BGO scintillating bolometer , 2014, 1405.3782.

[14]  A. Renshaw Solar Neutrino Results from Super-Kamiokande☆ , 2014, 1403.4575.

[15]  G F Cao,et al.  Spectral measurement of electron antineutrino oscillation amplitude and frequency at Daya Bay. , 2013, Physical review letters.

[16]  Ming-Yang Huang,et al.  Detection of Supernova Neutrinos on the Earth for Large theta(13) , 2013, 1303.0611.

[17]  X. Guo 郭,et al.  Detection of Supernova Neutrinos on the Earth for Large θ13 , 2014 .

[18]  L. Cadonati,et al.  Search for solar axions produced in the p ( d , ^ { 3 } He ) A reaction with Borexino detector , 2014 .

[19]  F. Iachello,et al.  57 22 v 1 [ nu clt h ] 2 5 S ep 2 01 2 Phase space factors for double-β decay , 2022 .

[20]  K. Perez Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment , 2014 .

[21]  S. Seibert,et al.  Nonstandard models, solar neutrinos, and large θ 13 , 2013, 1305.5835.

[22]  J. Kneller,et al.  Combining collective, MSW, and turbulence effects in supernova neutrino flavor evolution , 2013, 1304.6372.

[23]  P. Vogel,et al.  0νββ and 2νββ nuclear matrix elements, quasiparticle random-phase approximation, and isospin symmetry restoration , 2013, 1302.1509.

[24]  L. Cadonati,et al.  Measurement of geo-neutrinos from 1353 days of Borexino , 2013, 1303.2571.

[25]  K. Zuber,et al.  Measurement of the proton light response of various LAB based scintillators and its implication for supernova neutrino detection via neutrino–proton scattering , 2013, 1301.6403.

[26]  J. Barea,et al.  Nuclear matrix elements for double- β decay , 2013, 1301.4203.

[27]  S. Elliott,et al.  Combined analysis of all three phases of solar neutrino data from the Sudbury Neutrino Observatory , 2011, 1109.0763.

[28]  Stefan Schmitt,et al.  TUnfold, an algorithm for correcting migration effects in high energy physics , 2012, 1205.6201.

[29]  L. Cadonati,et al.  Search for Solar Axions Produced in p(d,3He)A Reaction with Borexino Detector , 2012 .

[30]  L. Cadonati,et al.  First evidence of pep solar neutrinos by direct detection in Borexino , 2012, Physical review letters.

[31]  H. Janka,et al.  Suppression of self-induced flavor conversion in the supernova accretion phase. , 2011, Physical review letters.

[32]  Giulio Maier,et al.  CUORE crystal validation runs: Results on radioactive contamination and extrapolation to CUORE background , 2011, 1108.4757.

[33]  L. Littenberg,et al.  A new water-based liquid scintillator and potential applications , 2011 .

[34]  F. T. Collaboration,et al.  Results from Super-Kamiokande , 2011, 1112.3425.

[35]  Andrea Ianni,et al.  Precision measurement of the (7)Be solar neutrino interaction rate in Borexino. , 2011, Physical review letters.

[36]  O. Perevozchikov,et al.  Partial radiogenic heat model for Earth revealed by geoneutrino measurements , 2011 .

[37]  M. Decowski,et al.  Measurement of the 8B solar neutrino flux with the KamLAND liquid scintillator detector , 2011, 1106.0861.

[38]  C. Volpe,et al.  The neutrino signal at HALO: learning about the primary supernova neutrino fluxes and neutrino properties , 2011, 1105.6225.

[39]  H. Tseung,et al.  Measurement of the dependence of the light yields of linear alkylbenzene-based and EJ-301 scintillators on electron energy , 2011, 1105.2100.

[40]  N. Tolich,et al.  Ellipsometric measurements of the refractive indices of linear alkylbenzene and EJ-301 scintillators from 210 to 1000 nm , 2011, 1105.2101.

[41]  I. Lawson,et al.  Low Background Counting At SNOLAB , 2011 .

[42]  O. Chkvorets,et al.  SNO+ Scintillator Purification and Assay , 2011 .

[43]  The University of Manchester,et al.  Measurement of the ββ decay half-life of 130Te with the NEMO-3 detector. , 2011, 1104.3716.

[44]  Wick C. Haxton,et al.  SOLAR MODELS WITH ACCRETION. I. APPLICATION TO THE SOLAR ABUNDANCE PROBLEM , 2011, 1104.1639.

[45]  J. Beacom,et al.  Reconstruction of supernova ν μ , ν τ , ν ¯ μ , and ν ¯ τ neutrino spectra at scintillator detectors , 2011 .

[46]  M. Decowski,et al.  Constraints on 13 from A Three-Flavor Oscillation Analysis of Reactor Antineutrinos at KamLAND , 2010, 1009.4771.

[47]  E. O’Sullivan,et al.  Scintillation decay time and pulse shape discrimination in oxygenated and deoxygenated solutions of linear alkylbenzene for the SNO+ experiment , 2011, 1102.0797.

[48]  Cristina Volpe,et al.  The neutrino signal at HALO: learning about the primary supernova neutrino fluxes and neutrino properties , 2011 .

[49]  Philip G. Jones Background rejection for the neutrinoless double beta decay experiment SNO , 2011 .

[50]  G. Martínez-Pinedo,et al.  Energy density functional study of nuclear matrix elements for neutrinoless ββ decay. , 2010, Physical review letters.

[51]  Michael Wurm,et al.  Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector , 2010 .

[52]  C. Jaupart,et al.  Enhanced crustal geo-neutrino production near the Sudbury Neutrino Observatory, Ontario, Canada , 2009 .

[53]  A. D. Ludovico,et al.  The liquid handling systems for the Borexino solar neutrino detector , 2009 .

[54]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[55]  M. Decowski,et al.  Production of radioactive isotopes through cosmic muon spallation in KamLAND , 2009 .

[56]  S. Collaboration Measurement of the Cosmic Ray and Neutrino-Induced Muon Flux at the Sudbury Neutrino Observatory , 2009, 0902.2776.

[57]  E. G. Myers,et al.  Masses of 130Te and 130Xe and double-beta-decay Q value of 130Te. , 2009, Physical review letters.

[58]  G. Pagliaroli,et al.  Improved analysis of SN1987A antineutrino events , 2008, 0810.0466.

[59]  F. Nowacki,et al.  Disassembling the nuclear matrix elements of the neutrinoless ββ decay , 2008, 0801.3760.

[60]  L. Cadonati,et al.  Direct measurement of the 7Be solar neutrino flux with 192 days of borexino data. , 2008, Physical review letters.

[61]  The Borexino Collaboration Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector , 2008, 0808.2868.

[62]  A. Serenelli,et al.  CN Cycle Solar Neutrinos and the Sun's Primordial Core Metallicity , 2008, 0805.2013.

[63]  N. Tolich Using neutrinos to study the earth , 2008 .

[64]  M. Decowski,et al.  Search for the invisible decay of neutrons with KamLAND. , 2006, Physical review letters.

[65]  白井 淳平 Search for the Invisible Decay of Neutrons with KamLAND , 2006 .

[66]  M. Chen The SNO Liquid Scintillator Project , 2005 .

[67]  Neubauer,et al.  Electron energy spectra, fluxes, and day-night asymmetries of 8B solar neutrinos from measurements with NaCl dissolved in the heavy-water detector at the Sudbury Neutrino Observatory , 2005 .

[68]  L. Cadonati,et al.  Cosmogenic 11C production and sentivity of organic scintillator detectors to pep and CNO neutrinos , 2004, hep-ph/0411002.

[69]  I. Krivosheina SN 1987A — HISTORICAL VIEW ABOUT REGISTRATION OF THE NEUTRINO SIGNAL WITH BAKSAN, KAMIOKANDE II AND IMB DETECTORS , 2004 .

[70]  M. Neubauer,et al.  Constraints on nucleon decay via invisible modes from the Sudbury Neutrino Observatory. , 2004, Physical review letters.

[71]  C. Lunardini,et al.  Solar neutrinos as probes of neutrino-matter interactions , 2004, hep-ph/0402266.

[72]  O. Dadoun,et al.  New limits on nucleon decays into invisible channels with the BOREXINO counting test facility , 2003 .

[73]  S Hatakeyama,et al.  First results from KamLAND: evidence for reactor antineutrino disappearance. , 2003, Physical review letters.

[74]  H. Janka,et al.  Monte Carlo Study of Supernova Neutrino Spectra Formation , 2002, astro-ph/0208035.

[75]  W. Farr,et al.  Detection of supernova neutrinos by neutrino-proton elastic scattering , 2002, hep-ph/0205220.

[76]  K. Scholberg,et al.  Supernova neutrino detection , 2000, 1205.6003.

[77]  M. Nakahata RESULTS FROM SUPER-KAMIOKANDE , 2001 .

[78]  M. Smy Solar Neutrino Results from Super-kamiokande , 2001 .

[79]  Leif J. Robinson,et al.  SNEWS: the SuperNova Early Warning System , 1999, astro-ph/9911359.

[80]  A. Bellerive,et al.  Sudbury Neutrino Observatory , 1999, 1602.02469.

[81]  N. Darnton,et al.  Measurement of the 14C abundance in a low-background liquid scintillator , 1998 .

[82]  Steven R. Elliott,et al.  Double Beta Decay , 2011, 1110.6159.

[83]  K. Lesko,et al.  The Sudbury Neutrino Observatory , 2000 .

[84]  Ejiri,et al.  Nuclear deexcitations of nucleon holes associated with nucleon decays in nuclei. , 1993, Physical review. C, Nuclear physics.

[85]  White,et al.  Measurement of neutrino-proton and antineutrino-proton elastic scattering. , 1982, Physical review. D, Particles and fields.

[86]  N. Gehrels,et al.  Instrumental background in balloon-borne gamma-ray spectrometers and techniques for its reduction , 1985 .

[87]  Otaviano Helene,et al.  Upper limit of peak area , 1983 .

[88]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[89]  L. Aller,et al.  The chemical composition of the sun. , 1976, Science.

[90]  K. C. Chandler,et al.  Calculations of neutron flux spectra induced in the Earth's atmosphere by galactic cosmic rays , 1973 .

[91]  J. B. Birks,et al.  The Theory and Practice of Scintillation Counting , 1965 .