The epidemiology ontology: an ontology for the semantic annotation of epidemiological resources

BackgroundEpidemiology is a data-intensive and multi-disciplinary subject, where data integration, curation and sharing are becoming increasingly relevant, given its global context and time constraints. The semantic annotation of epidemiology resources is a cornerstone to effectively support such activities. Although several ontologies cover some of the subdomains of epidemiology, we identified a lack of semantic resources for epidemiology-specific terms. This paper addresses this need by proposing the Epidemiology Ontology (EPO) and by describing its integration with other related ontologies into a semantic enabled platform for sharing epidemiology resources.ResultsThe EPO follows the OBO Foundry guidelines and uses the Basic Formal Ontology (BFO) as an upper ontology. The first version of EPO models several epidemiology and demography parameters as well as transmission of infection processes, participants and related procedures. It currently has nearly 200 classes and is designed to support the semantic annotation of epidemiology resources and data integration, as well as information retrieval and knowledge discovery activities.ConclusionsEPO is under active development and is freely available at https://code.google.com/p/epidemiology-ontology/. We believe that the annotation of epidemiology resources with EPO will help researchers to gain a better understanding of global epidemiological events by enhancing data integration and sharing.

[1]  Cosmin Stroe,et al.  Using AgreementMaker to align ontologies for OAEI 2010 , 2010, OM.

[2]  Francisco M. Couto,et al.  Enhancement of Chemical Entity Identification in Text Using Semantic Similarity Validation , 2013, PloS one.

[3]  Alessandro Vespignani,et al.  The GLEaMviz computational tool, a publicly available software to explore realistic epidemic spreading scenarios at the global scale , 2011, BMC infectious diseases.

[4]  Alan Ruttenberg,et al.  MIREOT: The minimum information to reference an external ontology term , 2009, Appl. Ontology.

[5]  Mário J. Silva,et al.  MEDCollector: Multisource Epidemic Data Collector , 2010, ITBAM.

[6]  João D. Ferreira,et al.  Generic Semantic Relatedness Measure for Biomedical Ontologies , 2011, ICBO.

[7]  Kevin Donnelly,et al.  SNOMED-CT: The advanced terminology and coding system for eHealth. , 2006, Studies in health technology and informatics.

[8]  P. Robinson,et al.  The Human Phenotype Ontology: a tool for annotating and analyzing human hereditary disease. , 2008, American journal of human genetics.

[9]  Erhard Rahm,et al.  Mapping Composition for Matching Large Life Science Ontologies , 2011, ICBO.

[10]  Michael Darsow,et al.  ChEBI: a database and ontology for chemical entities of biological interest , 2007, Nucleic Acids Res..

[11]  Sherri de Coronado,et al.  NCI Thesaurus: A semantic model integrating cancer-related clinical and molecular information , 2007, J. Biomed. Informatics.

[12]  Anthony J. G. Hey,et al.  The Fourth Paradigm: Data-Intensive Scientific Discovery [Point of View] , 2011 .

[13]  Angela Maduko,et al.  Using AgreementMaker to align Ontologies for OAEI 2009: Overview, Results, and Outlook , 2009, OM.

[14]  Stefan Schulz,et al.  Ontology patterns for tabular representations of biomedical knowledge on neglected tropical diseases , 2011, Bioinform..

[15]  Miquel Porta,et al.  A Dictionary of Epidemiology , 2008 .

[16]  Barry Smith,et al.  Biodynamic ontology: applying BFO in the biomedical domain. , 2004, Studies in health technology and informatics.

[17]  Caroline O. Buckee,et al.  Digital Epidemiology , 2012, PLoS Comput. Biol..

[18]  Martin Boeker,et al.  Scalable representations of diseases in biomedical ontologies , 2011, J. Biomed. Semant..

[19]  E. Faerstein,et al.  A DICTIONARY OF EPIDEMIOLOGY , 2016 .

[20]  D. Rebholz-Schuhmann,et al.  Text-mining solutions for biomedical research: enabling integrative biology , 2012, Nature Reviews Genetics.

[21]  Jonathan M. Samet,et al.  Data: to share or not to share? , 2009, Epidemiology.

[22]  Dennis L. Chao,et al.  FluTE, a Publicly Available Stochastic Influenza Epidemic Simulation Model , 2010, PLoS Comput. Biol..

[23]  Mark A. Musen,et al.  The Open Biomedical Annotator , 2009, Summit on translational bioinformatics.

[24]  M. Ashburner,et al.  The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration , 2007, Nature Biotechnology.

[25]  A. Rector,et al.  Relations in biomedical ontologies , 2005, Genome Biology.

[26]  B Hulsegge,et al.  Contributions to an animal trait ontology. , 2012, Journal of animal science.

[27]  Lynn M. Schriml,et al.  GeMInA, Genomic Metadata for Infectious Agents, a geospatial surveillance pathogen database , 2009, Nucleic Acids Res..

[28]  Csongor Nyulas,et al.  BioPortal: enhanced functionality via new Web services from the National Center for Biomedical Ontology to access and use ontologies in software applications , 2011, Nucleic Acids Res..

[29]  Carlos Santos,et al.  The Epidemic Marketplace Platform: towards semantic characterization of epidemiological resources using biomedical ontologies , 2012, ICBO.

[30]  Yongqun He,et al.  Protegen: a web-based protective antigen database and analysis system , 2010, Nucleic Acids Res..

[31]  Son Doan,et al.  BioCaster: detecting public health rumors with a Web-based text mining system , 2008, Bioinform..

[32]  Barry Smith,et al.  Infectious Disease Ontology , 2010 .

[33]  C E Lipscomb,et al.  Medical Subject Headings (MeSH). , 2000, Bulletin of the Medical Library Association.

[34]  Gang Feng,et al.  Disease Ontology: a backbone for disease semantic integration , 2011, Nucleic Acids Res..