Review of Decoherence‐Free Subspaces, Noiseless Subsystems, and Dynamical Decoupling

Quantum information requires protection from the adverse affects of decoherence and noise. This review provides an introduction to the theory of decoherence-free subspaces, noiseless subsystems, and dynamical decoupling. It addresses quantum information preservation as well protected computation.

[1]  Seth Lloyd,et al.  Universal Control of Decoupled Quantum Systems , 1999 .

[2]  D. Lidar,et al.  Performance of Deterministic Dynamical Decoupling Schemes: Concatenated and Periodic Pulse Sequences , 2006, quant-ph/0607086.

[3]  Daniel A. Lidar,et al.  Rigorous Performance Bounds for Quadratic and Nested Dynamical Decoupling , 2011, 1111.3289.

[4]  D A Lidar,et al.  Efficient universal leakage elimination for physical and encoded qubits. , 2002, Physical review letters.

[5]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[6]  Daniel A. Lidar,et al.  High fidelity quantum gates via dynamical decoupling. , 2010, Physical review letters.

[7]  Kempe,et al.  Universal fault-tolerant quantum computation on decoherence-free subspaces , 2000, Physical review letters.

[8]  Lorenza Viola,et al.  Enhanced convergence and robust performance of randomized dynamical decoupling. , 2006, Physical review letters.

[9]  Lorenza Viola,et al.  Random decoupling schemes for quantum dynamical control and error suppression. , 2005, Physical review letters.

[10]  P. Zanardi Symmetrizing Evolutions , 1998, quant-ph/9809064.

[11]  D A Lidar,et al.  Reducing constraints on quantum computer design by encoded selective recoupling. , 2002, Physical review letters.

[12]  C. Murphy,et al.  VEGF111: new insights in tissue invasion , 2015, Front. Physiol..

[13]  John Preskill,et al.  Combining dynamical decoupling with fault-tolerant quantum computation , 2009, 0911.3202.

[14]  University of Toronto,et al.  Exchange interaction between three and four coupled quantum dots: Theory and applications to quantum computing , 2004 .

[15]  Gershon Kurizki,et al.  Bath-optimized minimal-energy protection of quantum operations from decoherence. , 2010, Physical review letters.

[16]  R. Bhatia Matrix Analysis , 1996 .

[17]  Fabio Benatti,et al.  Irreversible Quantum Dynamics , 2010 .

[18]  Dieter Suter,et al.  Performance comparison of dynamical decoupling sequences for a qubit in a rapidly fluctuating spin-bath , 2010, 1008.1962.

[19]  Wen Yang,et al.  Preserving qubit coherence by dynamical decoupling , 2010, 1007.0623.

[20]  Lloyd,et al.  Dynamical generation of noiseless quantum subsystems , 2000, Physical review letters.

[21]  David Poulin,et al.  Unified and generalized approach to quantum error correction. , 2004, Physical review letters.

[22]  Daniel A. Lidar,et al.  Towards fault tolerant adiabatic quantum computation. , 2007, Physical review letters.

[23]  M. Hammermesh,et al.  Group theory and its applications to physical problems , 1989 .

[24]  Berkeley,et al.  Decoherence-Free Subspaces and Subsystems , 2003, quant-ph/0301032.

[25]  Daniel A. Lidar,et al.  Optimal dynamical decoherence control of a qubit. , 2008, Physical review letters.

[26]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[27]  K. B. Whaley,et al.  Universal quantum computation with the exchange interaction , 2000, Nature.

[28]  D A Lidar,et al.  Creating decoherence-free subspaces using strong and fast pulses. , 2002, Physical review letters.

[29]  G. Uhrig Keeping a quantum bit alive by optimized pi-pulse sequences. , 2006, Physical review letters.

[30]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[31]  Michael J Biercuk,et al.  Optimized noise filtration through dynamical decoupling. , 2009, Physical review letters.

[32]  Ren-Bao Liu,et al.  Protection of quantum systems by nested dynamical decoupling , 2010, 1006.1601.

[33]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[34]  Daniel A Lidar,et al.  Comprehensive encoding and decoupling solution to problems of decoherence and design in solid-state quantum computing. , 2002, Physical review letters.

[35]  Daniel A. Lidar,et al.  Near-optimal dynamical decoupling of a qubit. , 2009, Physical review letters.