From isolated subgroups to generic permutation representations

Let $G$ be a countable group, $\operatorname{Sub}(G)$ the (compact, metric) space of all subgroups of $G$ with the Chabauty topology and $\operatorname{Is}(G) \subset \operatorname{Sub}(G)$ the collection of isolated points. We denote by $X!$ the (Polish) group of all permutations of a countable set $X$. Then the following properties are equivalent: (i) $\operatorname{Is}(G)$ is dense in $\operatorname{Sub}(G)$, (ii) $G$ admits a "generic permutation representation". Namely there exists some $\tau^* \in \operatorname{Hom}(G,X!)$ such that the collection of permutation representations $\{\phi \in \operatorname{Hom}(G,X!) \ | \ \phi {\text{is permutation isomorphic to}} \tau^*\}$ is co-meager in $\operatorname{Hom}(G,X!)$. We call groups satisfying these properties solitary. Examples of solitary groups include finitely generated LERF groups and groups with countably many subgroups.

[1]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[2]  Hall’s Theorem for Limit Groups , 2006, math/0605546.

[3]  Benjamin Weiss,et al.  Topological groups with Rokhlin properties , 2008 .

[4]  Peter Scott Subgroups of Surface Groups are Almost Geometric , 1978 .

[5]  Christian Rosendal,et al.  Finitely approximate groups and actions Part I: The Ribes–Zalesskiĭ property , 2007, The Journal of Symbolic Logic.

[6]  Luc Guyot,et al.  On the isolated points in the space of groups , 2007 .

[7]  L. Guyot,et al.  The space of subgroups of an abelian group , 2008, 0811.1549.

[8]  A. Kechris,et al.  Turbulence, amalgamation, and generic automorphisms of homogeneous structures , 2004, math/0409567.

[9]  Saharon Shelah,et al.  The Small Index Property for ω‐Stable (ω‐Categorical Structures and for the Random Graph , 1993 .

[10]  Rostislav Grigorchuk,et al.  On the lattice of subgroups of the lamplighter group , 2012, Int. J. Algebra Comput..

[11]  Christian Rosendal,et al.  Finitely approximable groups and actions Part II: Generic representations , 2011, The Journal of Symbolic Logic.

[12]  M. Hall Subgroups of Finite Index in Free Groups , 1949, Canadian Journal of Mathematics.

[13]  Ian Agol,et al.  The virtual Haken conjecture , 2012, 1204.2810.

[14]  R. Lathe Phd by thesis , 1988, Nature.

[15]  Robert G. Burns,et al.  On Finitely Generated Subgroups of Free Products , 1971, Journal of the Australian Mathematical Society.

[16]  A. Reid,et al.  Subgroup separability and virtual retractions of groups , 2008 .

[17]  AMALGAMATION , 1963 .

[18]  J. Melleray,et al.  Generic representations of abelian groups and extreme amenability , 2011, 1107.1698.

[19]  R. I. Grigorchuk,et al.  A Structural Property Concerning Abstract Commensurability of Subgroups , 2003 .

[20]  Peter Scott Correction to ‘Subgroups of Surface Groups are almost Geometric’ , 1985 .

[21]  K. B. Rao,et al.  A category analogue of the Hewitt-Savage zero-one law , 1974 .