Constructive innovation of approaching bicyclo[3.2.1]octane in ent-kauranoids

Abstract In this Digest, innovative strategies and tactics attributed to construct a full 6–6-fused bicyclo[3.2.1]octane framework of ent -kauranoids are highlighted. Although the first synthesis of ent -kaurene was reported fifty years ago, modern synthetic methods continue to sustain this field to the frontier of synthetic chemistry. Recent advances implemented new perspectives in the construction of bicycle[3.2.1]octane skeleton as well as the overall efficiency of synthesis. Biogenesis of ent -kaurene was recently revisited by comprehensive computational analysis. An updated proposal argued that ent -beyerane is derived from ent -kauranyl cation since the secondary carbocation is energetically unfavorable, which may throw light on new experimental design and further biomimicry study to better understand the origin of this vast category of ent -kauranoids.

[1]  M. Ihara,et al.  Total syntheses of (-)-methyl atis-16-en-19-oate, (-)-methyl kaur-16-en-19-oate, and (-)-methyl trachyloban-19-oate by a combination of palladium-catalyzed cycloalkenylation and homoallyl-homoallyl radical rearrangement. , 2000, The Journal of organic chemistry.

[2]  L. Paquette,et al.  SYNTHETIC ENTRY INTO THE ENT-KAURENE FRAMEWORK. APPLICATION OF AN UNPRECEDENTED TRANSANNULAR CYCLIZATION FOR FORMING THE CENTRAL BOND COMMON TO THE B AND C RINGS , 1997 .

[3]  B. Foxman,et al.  Total Syntheses of (±)-Isosteviol and (±)-Beyer-15-ene-3β,19-diol by Manganese(III)-Based Oxidative Quadruple Free-Radical Cyclization , 1998 .

[4]  Wei‐Lie Xiao,et al.  6,7‐seco‐ent‐Kaurane Diterpenoids from Isodon sculponeatus with Cytotoxic Activity , 2010, Chemistry & biodiversity.

[5]  Y. Takeda,et al.  Longikaurin C, D, E and F; New Antibacterial Diterpenoids from Rabdosia longituba , 1981 .

[6]  P. Dewick,et al.  Medicinal Natural Products: A Biosynthetic Approach , 1997 .

[7]  P. R. Jefferies,et al.  Growth Response of the d-5 and an-1 Mutants of Maize to Some Kaurene Derivatives , 1964, Science.

[8]  Han-Dong Sun,et al.  Diterpenoids from Isodon species and their biological activities. , 2006, Natural product reports.

[9]  C. Djerassi,et al.  Terpenoids. XLV.1 Further Studies on the Structure and Absolute Configuration of Cafestol2 , 1960 .

[10]  Frederick E. Ziegler,et al.  The stereocontrolled photoaddition of allene to cyclopent-1-ene-1-carboxaldehydes. A total synthesis of (±) steviol methyl ester and isosteviol methyl ester , 1977 .

[11]  E. Corey,et al.  Enantioselective Total Synthesis of the Potent Anti-HIV Agent Neotripterifordin. Reassignment of Stereochemistry at C(16) , 1997 .

[12]  P. Schleyer,et al.  Crystal Structure Determination of the Nonclassical 2-Norbornyl Cation , 2013, Science.

[13]  R. Witkamp,et al.  The role of epoxidation and electrophile-responsive element-regulated gene transcription in the potentially beneficial and harmful effects of the coffee components cafestol and kahweol. , 2010, The Journal of nutritional biochemistry.

[14]  L. Paquette,et al.  Synthetic studies targeted at the cytotoxic 8,9-seco-ent-kaurene diterpenes. Concise complementary stereocontrolled construction of the bridgehead olefin core , 1989 .

[15]  A. Scott,et al.  Stereochemistry of the Diterpenoids: Absolute Configuration of Cafestol , 1962 .

[16]  Jean Rodriguez,et al.  Synthesis of Functionalized Bicyclo[3.2.1]octanes and Their Multiple Uses in Organic Chemistry. , 1999, Chemical reviews.

[17]  E. Mosettig,et al.  STEVIOSIDE. II. THE STRUCTURE OF THE AGLUCON , 1955 .

[18]  T. Toyomasu,et al.  Proposed mechanism for the reaction catalyzed by a diterpene cyclase, aphidicolan-16beta-ol synthase: experimental results on biomimetic cyclization and examination of the cyclization pathway by ab initio calculations. , 2002, Journal of the American Chemical Society.

[19]  K. Ramalakshmi,et al.  A Perception on Health Benefits of Coffee , 2008, Critical reviews in food science and nutrition.

[20]  D. Tantillo,et al.  Formation of beyerene, kaurene, trachylobane, and atiserene diterpenes by rearrangements that avoid secondary carbocations. , 2010, Journal of the American Chemical Society.

[21]  J. Hogg Synthetic sterols; model experiments employing Hagemann's ester. , 1948, Journal of the American Chemical Society.

[22]  Lili Zhu,et al.  Total synthesis of (±)-cafestol: a late-stage construction of the furan ring inspired by a biosynthesis strategy. , 2014, Organic letters.

[23]  Jun Wang,et al.  Platensimycin is a selective FabF inhibitor with potent antibiotic properties , 2006, Nature.

[24]  E. Mosettig,et al.  OPTICAL ROTATORY DISPERSION STUDIES. LVIII.1 THE COMPLETE ABSOLUTE CONFIGURATIONS OF STEVIOL, KAURENE AND THE DITERPENE ALKALOIDS OF THE GARRYFOLINE AND ATISINE GROUPS2 , 1961 .

[25]  Kenji Mori,et al.  Total synthesis of (±)-kaur-16-en-19-oic acid , 1966 .

[26]  Meimei Xu,et al.  Biochemical characterization of the castor bean ent-kaurene synthase(-like) family supports quantum chemical view of diterpene cyclization. , 2014, Phytochemistry.

[27]  P. Wieland,et al.  Über die Herstellung mehrkerniger Ketone , 1950 .

[28]  Ralf Braun,et al.  Direct Asymmetric Entry into the Cytotoxic 8,9-Secokaurene Diterpenoids. Total Synthesis of (−)-O-Methylshikoccin and (+)-O-(Methylepoxy)shikoccin , 1996 .

[29]  Kenji Mori,et al.  Total synthesis of (±)-steviol☆ , 1970 .

[30]  L. Mander Twenty years of gibberellin research. , 2003, Natural product reports.

[31]  Ashutosh Kumar Singh,et al.  Total synthesis of (.+-.)-atractyligenin , 1987 .

[32]  H. Weng,et al.  Oridonin induces apoptosis and cell cycle arrest of gallbladder cancer cells via the mitochondrial pathway , 2014, BMC Cancer.

[33]  K. Fuji,et al.  Terpenoids. L: Antitumor activity of diterpenoids from Rabdosia shikokiana var. occidentalis , 1985 .

[34]  Sarah E. Reisman,et al.  A unified strategy for the synthesis of (−)-maoecrystal Z, (−)-trichorabdal A, and (−)-longikaurin E , 2014 .

[35]  R. Church,et al.  Experiments directed toward the total synthesis of terpenes. VII. The synthesis of (+or-)-8-beta-carbomethoxy-13-oxopodocarpanone, a degradation product of phyllocladene. , 1966, The Journal of organic chemistry.

[36]  M. Klingenberg The ADP,ATP shuttle of the mitochondrion , 1979 .

[37]  G. Spiteller,et al.  Über ein neues Atractyligenin‐Glycosid aus grünen Kaffeebohnen , 1978 .

[38]  R. Peters,et al.  Terpenoid synthase structures: a so far incomplete view of complex catalysis. , 2012, Natural product reports.

[39]  Kenji Mori,et al.  Diterpenoid total synthesis—XIX : (±)-Steviol and erythroxydiol A: Rearrangements in bicyclooctane compounds , 1972 .

[40]  Jean Rodriguez,et al.  Syntheses and applications of functionalized bicyclo[3.2.1]octanes: thirteen years of progress. , 2013, Chemical reviews.

[41]  P. Jefferies,et al.  The chemistry of the Euphorbiaceae. VII. The diterpenes of Ricinocarpus stylosus Diels , 1964 .

[42]  C. Djerassi,et al.  Terpenoids. XXXVII.1 The Structure of the Pentacyclic Diterpene Cafestol. On the Absolute Configuration of Diterpenes and Alkaloids of the Phyllocladene Group2 , 1959 .

[43]  H. G. Fletcher,et al.  Stevioside. III. The Anomeric 2,3,4,6-Tetra-O-acetyl-1-O-mesitoyl-D-glucopyranoses and their Behavior with Alkali1,2 , 1956 .

[44]  Han-Dong Sun,et al.  Maoecrystal V, cytotoxic diterpenoid with a novel C19 skeleton from Isodon eriocalyx (Dunn.) hara. , 2004, Organic letters.

[45]  R. Schulte‐Hermann,et al.  Coffee and its chemopreventive components Kahweol and Cafestol increase the activity of O6-methylguanine-DNA methyltransferase in rat liver--comparison with phase II xenobiotic metabolism. , 2003, Mutation research.

[46]  Phil S Baran,et al.  Synthesis of ent-kaurane and beyerane diterpenoids by controlled fragmentations of overbred intermediates. , 2013, Angewandte Chemie.

[47]  K. Kaliappan,et al.  Discovery and syntheses of "superbug challengers"-platensimycin and platencin. , 2010, Chemistry, an Asian journal.

[48]  Yang Yang,et al.  Oridonin, a diterpenoid purified from Rabdosia rubescens, inhibits the proliferation of cells from lymphoid malignancies in association with blockade of the NF-κB signal pathways , 2005, Molecular Cancer Therapeutics.

[49]  Natural diterpenes from coffee, cafestol and kahweol induce apoptosis through regulation of specificity protein 1 expression in human malignant pleural mesothelioma , 2012, Journal of Biomedical Science.

[50]  T. Nakano,et al.  Anti-AIDS agents--XIX. Neotripterifordin, a novel anti-HIV principle from Tripterygium wilfordii: isolation and structural elucidation. , 1995, Bioorganic & Medicinal Chemistry.

[51]  J. Mulzer,et al.  Synthesis of platensimycin. , 2008, Angewandte Chemie.

[52]  Lili Zhu,et al.  Biomimetic Cationic Cyclization toward ent-Kaurene-type Diterpenoids , 2013 .

[53]  Hui Zhou,et al.  Triggering Fbw7-Mediated Proteasomal Degradation of c-Myc by Oridonin Induces Cell Growth Inhibition and Apoptosis , 2012, Molecular Cancer Therapeutics.

[54]  B. Snider Mechanisms of Mn(OAc)(3)-based oxidative free-radical additions and cyclizations. , 2009, Tetrahedron.

[55]  E. Corey,et al.  An Enantioselective Synthetic Route to Atractyligenin Using the Oxazaborolidine-Catalyzed Reduction of β-Silyl- or β-Stannyl-Substituted α,β-Enones as a Key Step , 1997 .

[56]  Sarah E Reisman,et al.  A unified strategy to ent-kauranoid natural products: total syntheses of (-)-trichorabdal A and (-)-longikaurin E. , 2013, Journal of the American Chemical Society.

[57]  E. Mosettig,et al.  The Absolute Configuration of Steviol and Isosteviol , 1963 .

[58]  M. Saleem,et al.  Platensimycin and its relatives: a recent story in the struggle to develop new naturally derived antibiotics. , 2011, Natural product reports.

[59]  E. Mosettig,et al.  Gibberellin activity of steviol, a plant terpenoid , 2004, Naturwissenschaften.

[60]  R. Peters,et al.  Electrostatic effects on (di)terpene synthase product outcome. , 2011, Chemical communications.

[61]  R. Bell,et al.  Experiments Directed toward the Total Synthesis of Terpenes. VIII. The Total Synthesis of (±)-Kaurene and (±)-Atisirene1 , 1966 .

[62]  Ashutosh Kumar Singh,et al.  Stereospecific total synthesis of (.+-.)-cafestol , 1987 .

[63]  Yitao Wang,et al.  Oridonin induces apoptosis, inhibits migration and invasion on highly-metastatic human breast cancer cells. , 2013, The American journal of Chinese medicine.

[64]  R. J. Thomson,et al.  The total synthesis of Isodon diterpenes. , 2014, Angewandte Chemie.

[65]  Hui Zhou,et al.  Inhibition of miR-17 and miR-20a by oridonin triggers apoptosis and reverses chemoresistance by derepressing BIM-S. , 2014, Cancer research.

[66]  K. Fuji,et al.  Terpenoids. XLVIII. New Diterpenoids from Rabdosia shikokiana var. occidentalis , 1985 .

[67]  K. Norton,et al.  299. New metabolites of Gibberella fujikuroi. Part VIII. Gibberellin A12 , 1965 .

[68]  Frederick E. Ziegler,et al.  1-Hydroxy-7-methylene bicyclo[3.2.1]octane: a gibbane-steviol c/d ring model , 1971 .

[69]  朱莉莉,et al.  Biomimetic Cationic Cyclization toward ent-Kaurene-type Diterpenoids , 2013 .

[70]  F. Liu,et al.  Oridonin induces apoptosis and senescence by increasing hydrogen peroxide and glutathione depletion in colorectal cancer cells , 2012, International journal of molecular medicine.