Z8-Kerdock codes and pseudorandom binary sequences
暂无分享,去创建一个
Patrick Solé | Jyrki T. Lahtonen | San Ling | Dmitrii Zinoviev | D. Zinoviev | P. Solé | S. Ling | J. Lahtonen
[1] A. Robert Calderbank,et al. An upper bound for Weft exponential sums over Galois tings and applications , 1994, IEEE Trans. Inf. Theory.
[2] G. Grisetti,et al. Further Reading , 1984, IEEE Spectrum.
[3] N. J. A. Sloane,et al. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.
[4] B. R. McDonald. Finite Rings With Identity , 1974 .
[5] Sascha Barg. On small families of sequences with low periodic correlation , 1993, Algebraic Coding.
[6] Laurence B. Milstein,et al. Spread-Spectrum Communications , 1983 .
[7] Claude Carlet. Z2k-Linear Codes , 1998, IEEE Trans. Inf. Theory.
[8] O. Antoine,et al. Theory of Error-correcting Codes , 2022 .
[9] CarletC.. Z2k-linear codes , 1998 .
[10] Tor Helleseth,et al. An Expansion for the Coordinates of the Trace Function over Galois Rings , 1997, Applicable Algebra in Engineering, Communication and Computing.
[11] P. Vijay Kumar,et al. 4-phase Sequences with Near-optimum Correlation Properties , 1992, IEEE Trans. Inf. Theory.
[12] Jyrki Lahtonen,et al. On the odd and the aperiodic correlation properties of the Kasami sequences , 1995, IEEE Trans. Inf. Theory.
[13] Arogyaswami Paulraj,et al. Spread-Spectrum Communication , 1999 .
[14] Patrick Solé,et al. Nonlinear p-ary Sequences , 2003, Applicable Algebra in Engineering, Communication and Computing.
[15] Tor Helleseth,et al. Improved binary codes and sequence families from Z4-linear codes , 1996, IEEE Trans. Inf. Theory.
[16] T. Helleseth,et al. An upper bound for some exponential sums over Galois rings and applications , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.
[17] Claude Carlet,et al. Codes, Bent Functions and Permutations Suitable For DES-like Cryptosystems , 1998, Des. Codes Cryptogr..