Random Design Analysis of Ridge Regression
暂无分享,去创建一个
[1] Don R. Hush,et al. Optimal Rates for Regularized Least Squares Regression , 2009, COLT.
[2] A. Caponnetto,et al. Optimal Rates for the Regularized Least-Squares Algorithm , 2007, Found. Comput. Math..
[3] M. Nussbaum. Minimax Risk, Pinsker Bound for , 2006 .
[4] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[5] J. Tropp. FREEDMAN'S INEQUALITY FOR MATRIX MARTINGALES , 2011, 1101.3039.
[6] Bernard Chazelle,et al. The Fast Johnson--Lindenstrauss Transform and Approximate Nearest Neighbors , 2009, SIAM J. Comput..
[7] Sham M. Kakade,et al. A spectral algorithm for learning Hidden Markov Models , 2008, J. Comput. Syst. Sci..
[8] E. L. Lehmann,et al. Theory of point estimation , 1950 .
[9] Jean-Yves Audibert,et al. Robust linear regression through PAC-Bayesian truncation , 2010 .
[10] V. Koltchinskii. Local Rademacher complexities and oracle inequalities in risk minimization , 2006, 0708.0083.
[11] M. Rudelson,et al. Smallest singular value of random matrices and geometry of random polytopes , 2005 .
[12] Jean-Yves Audibert,et al. Linear regression through PAC-Bayesian truncation , 2010, 1010.0072.
[13] Petros Drineas,et al. Effective Resistances, Statistical Leverage, and Applications to Linear Equation Solving , 2010, ArXiv.
[14] Arthur E. Hoerl,et al. Application of ridge analysis to regression problems , 1962 .
[15] Daniel J. Hsu,et al. Tail inequalities for sums of random matrices that depend on the intrinsic dimension , 2012 .
[16] V. N. Bogaevski,et al. Matrix Perturbation Theory , 1991 .
[17] Sham M. Kakade,et al. Dimension-free tail inequalities for sums of random matrices , 2011, ArXiv.
[18] Adam Krzyzak,et al. A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.
[19] C. J. Stone,et al. Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .
[20] Olivier Catoni,et al. Statistical learning theory and stochastic optimization , 2004 .
[21] P. Massart,et al. Adaptive estimation of a quadratic functional by model selection , 2000 .
[22] Bernard Chazelle,et al. Approximate nearest neighbors and the fast Johnson-Lindenstrauss transform , 2006, STOC '06.
[23] Jean-Yves Audibert,et al. Robust linear least squares regression , 2010, 1010.0074.
[24] V. Rokhlin,et al. A fast randomized algorithm for overdetermined linear least-squares regression , 2008, Proceedings of the National Academy of Sciences.
[25] S. Muthukrishnan,et al. Faster least squares approximation , 2007, Numerische Mathematik.
[26] Tong Zhang,et al. Learning Bounds for Kernel Regression Using Effective Data Dimensionality , 2005, Neural Computation.
[27] S. Smale,et al. Learning Theory Estimates via Integral Operators and Their Approximations , 2007 .
[28] Sham M. Kakade,et al. A tail inequality for quadratic forms of subgaussian random vectors , 2011, ArXiv.