Correspondences between retinotopic areas and myelin maps in human visual cortex

[1]  Timothy S. Coalson,et al.  Analysis of cortical shape in children with simplex autism. , 2015, Cerebral cortex.

[2]  Mark Jenkinson,et al.  MSM: A new flexible framework for Multimodal Surface Matching , 2014, NeuroImage.

[3]  Karen F. LaRocque,et al.  Where is human V4? Predicting the location of hV4 and VO1 from cortical folding. , 2014, Cerebral cortex.

[4]  Matthew F. Glasser,et al.  Trends and Properties of Human Cerebral Cortex: Correlations with Cortical Myelin Content Introduction and Review , 2022 .

[5]  Katrin Amunts,et al.  The mid-fusiform sulcus: A landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex , 2014, NeuroImage.

[6]  Rainer Goebel,et al.  Functionally informed cortex based alignment: An integrated approach for whole-cortex macro-anatomical and ROI-based functional alignment , 2013, NeuroImage.

[7]  W. Vanduffel,et al.  Definition of the macaque posterior parietal regions using MRI-based measures of retinotopy, connectivity, myelination, and function , 2013 .

[8]  Mark W. Woolrich,et al.  Resting-state fMRI in the Human Connectome Project , 2013, NeuroImage.

[9]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[10]  Stephen M. Smith,et al.  Multimodal Surface Matching: Fast and Generalisable Cortical Registration Using Discrete Optimisation , 2013, IPMI.

[11]  Guy A. Orban,et al.  The overlap of the EBA and the MT/V5 cluster , 2013, NeuroImage.

[12]  F. Dick,et al.  Mapping the Human Cortical Surface by Combining Quantitative T1 with Retinotopy† , 2012, Cerebral cortex.

[13]  R. Nieuwenhuys The myeloarchitectonic studies on the human cerebral cortex of the Vogt–Vogt school, and their significance for the interpretation of functional neuroimaging data , 2013, Brain Structure and Function.

[14]  John W. Harwell,et al.  Cortical parcellations of the macaque monkey analyzed on surface-based atlases. , 2012, Cerebral cortex.

[15]  Timothy S. Coalson,et al.  Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. , 2012, Cerebral cortex.

[16]  H. Railo,et al.  Retinotopic Maps, Spatial Tuning, and Locations of Human Visual Areas in Surface Coordinates Characterized with Multifocal and Blocked fMRI Designs , 2012, PloS one.

[17]  A. Schleicher,et al.  Cytoarchitectonical analysis and probabilistic mapping of two extrastriate areas of the human posterior fusiform gyrus , 2012, Brain Structure and Function.

[18]  A. Schleicher,et al.  Cytoarchitectonic mapping of the human dorsal extrastriate cortex , 2012, Brain Structure and Function.

[19]  M. Corbetta,et al.  Inter-species activity correlations reveal functional correspondences between monkey and human brain areas , 2012, Nature Methods.

[20]  David C. Van Essen,et al.  Automated landmark identification for human cortical surface-based registration , 2012, NeuroImage.

[21]  D. V. van Essen,et al.  Mapping Human Cortical Areas In Vivo Based on Myelin Content as Revealed by T1- and T2-Weighted MRI , 2011, The Journal of Neuroscience.

[22]  R. Turner,et al.  Microstructural Parcellation of the Human Cerebral Cortex – From Brodmann's Post-Mortem Map to in vivo Mapping with High-Field Magnetic Resonance Imaging , 2011, Front. Hum. Neurosci..

[23]  M. Pinsk,et al.  Visuotopic Organization of Macaque Posterior Parietal Cortex: A Functional Magnetic Resonance Imaging Study , 2011, The Journal of Neuroscience.

[24]  Christopher C. Pack,et al.  temporal neurons Speed and direction selectivity of macaque middle , 2002 .

[25]  G. Orban,et al.  The Retinotopic Organization of the Human Middle Temporal Area MT/V5 and Its Cortical Neighbors , 2010, The Journal of Neuroscience.

[26]  Mert R. Sabuncu,et al.  Learning Task-Optimal Registration Cost Functions for Localizing Cytoarchitecture and Function in the Cerebral Cortex , 2010, IEEE Transactions on Medical Imaging.

[27]  S. Francis,et al.  Mapping human somatosensory cortex in individual subjects with 7 T functional MRI 1 Running title : Mapping human somatosensory cortex , 2010 .

[28]  Simon B. Eickhoff,et al.  Comparison of functional and cytoarchitectonic maps of human visual areas V1, V2, V3d, V3v, and V4(v) , 2010, NeuroImage.

[29]  B. Spehar,et al.  The Foveal Confluence in Human Visual Cortex , 2009, The Journal of Neuroscience.

[30]  Katrin Amunts,et al.  Locating the functional and anatomical boundaries of human primary visual cortex , 2009, NeuroImage.

[31]  B. Wandell,et al.  Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. , 2009, Journal of neurophysiology.

[32]  G. Orban,et al.  Human Functional Magnetic Resonance Imaging Reveals Separation and Integration of Shape and Motion Cues in Biological Motion Processing , 2009, The Journal of Neuroscience.

[33]  W. Vanduffel,et al.  Visual Field Map Clusters in Macaque Extrastriate Visual Cortex , 2009, The Journal of Neuroscience.

[34]  Svetlana S. Georgieva,et al.  The Processing of Three-Dimensional Shape from Disparity in the Human Brain , 2009, The Journal of Neuroscience.

[35]  Essa Yacoub,et al.  High-field fMRI unveils orientation columns in humans , 2008, Proceedings of the National Academy of Sciences.

[36]  John G. Csernansky,et al.  Comparing surface-based and volume-based analyses of functional neuroimaging data in patients with schizophrenia , 2008, NeuroImage.

[37]  Lawrence L. Wald,et al.  Accurate prediction of V1 location from cortical folds in a surface coordinate system , 2008, NeuroImage.

[38]  Katrin Amunts,et al.  Cortical Folding Patterns and Predicting Cytoarchitecture , 2007, Cerebral cortex.

[39]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[40]  A. Schleicher,et al.  Cytoarchitectonic analysis of the human extrastriate cortex in the region of V5/MT+: a probabilistic, stereotaxic map of area hOc5. , 2006, Cerebral cortex.

[41]  U. Ilg,et al.  Primate area MST-l is involved in the generation of goal-directed eye and hand movements. , 2007, Journal of neurophysiology.

[42]  D. Heeger,et al.  Two Retinotopic Visual Areas in Human Lateral Occipital Cortex , 2006, The Journal of Neuroscience.

[43]  Alison J. Wiggett,et al.  Patterns of fMRI Activity Dissociate Overlapping Functional Brain Areas that Respond to Biological Motion , 2006, Neuron.

[44]  H. Bridge,et al.  Methodological issues relating to in vivo cortical myelography using MRI , 2005, Human brain mapping.

[45]  K. Amunts,et al.  Human V5/MT+: comparison of functional and cytoarchitectonic data , 2005, Anatomy and Embryology.

[46]  D. Bradley,et al.  Structure and function of visual area MT. , 2005, Annual review of neuroscience.

[47]  Katrin Amunts,et al.  Linking retinotopic fMRI mapping and anatomical probability maps of human occipital areas V1 and V2 , 2005, NeuroImage.

[48]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[49]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[50]  P. Downing,et al.  Selectivity for the human body in the fusiform gyrus. , 2005, Journal of neurophysiology.

[51]  D. V. van Essen,et al.  A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. , 2005, NeuroImage.

[52]  Timothy Edward John Behrens,et al.  Changes in connectivity profiles define functionally distinct regions in human medial frontal cortex. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[53]  B. Fischer,et al.  Visual field representations and locations of visual areas V1/2/3 in human visual cortex. , 2003, Journal of vision.

[54]  Doris Y. Tsao,et al.  Faces and objects in macaque cerebral cortex , 2003, Nature Neuroscience.

[55]  Olivier P. Faugeras,et al.  The Retinotopic Organization of Primate Dorsal V4 and Surrounding Areas: A Functional Magnetic Resonance Imaging Study in Awake Monkeys , 2003, The Journal of Neuroscience.

[56]  N. Logothetis,et al.  Visual Areas in Macaque Cortex Measured Using Functional Magnetic Resonance Imaging , 2002, The Journal of Neuroscience.

[57]  D. Heeger,et al.  Retinotopy and Functional Subdivision of Human Areas MT and MST , 2002, The Journal of Neuroscience.

[58]  G. Orban,et al.  The organization of orientation selectivity throughout macaque visual cortex. , 2002, Cerebral cortex.

[59]  J. Kaas,et al.  Evidence for a Modified V3 with Dorsal and Ventral Halves in Macaque Monkeys , 2002, Neuron.

[60]  D. V. van Essen,et al.  Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto‐occipital cortex , 2000, The Journal of comparative neurology.

[61]  K. Amunts,et al.  Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.

[62]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[63]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[64]  A. Leventhal,et al.  Signal timing across the macaque visual system. , 1998, Journal of neurophysiology.

[65]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[66]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[69]  H. Komatsu,et al.  Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. , 1988, Journal of neurophysiology.

[70]  H. Komatsu,et al.  Relation of cortical areas MT and MST to pursuit eye movements. III. Interaction with full-field visual stimulation. , 1988, Journal of neurophysiology.

[71]  D. J. Felleman,et al.  Anatomical and physiological asymmetries related to visual areas V3 and VP in macaque extrastriate cortex , 1986, Vision Research.

[72]  S. Lisberger,et al.  Properties of visual inputs that initiate horizontal smooth pursuit eye movements in monkeys , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[73]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[74]  John H. R. Maunsell,et al.  The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization , 1981, The Journal of comparative neurology.