100 million years of morphological conservation in bark beetles (Coleoptera: Curculionidae: Scolytinae)

Abstract Scolytine weevils (bark and ambrosia beetles) have a unique ecological significance in forest ecosystems, which equates to major effects on landscape ecology and to monetary losses. Fossilized galleries of scolytines have been reported in Late Mesozoic wood, but here we describe a well‐preserved body fossil from the Cretaceous, c. 100 Ma, preserved in amber from northern Myanmar. Moreover, the specimen is remarkably similar to Recent species of the genus Microborus, revealing stasis unexpected within scolytines and thus highlighting the antiquity of the group. Stratigraphic dating and comparison of insect palaeofaunas included in other well‐dated ambers from multiple sites support the age estimate of the Burmese amber. A minimum age for one clade of scolytines is thus established, indicating an early divergence of scolytines from other weevils in the Late Jurassic or Early Cretaceous and challenging the current perspective of weevil evolution.

[1]  D. Grimaldi,et al.  Chimeromyiidae, a new family of Eremoneuran Diptera from the Cretaceous , 2009 .

[2]  A. Nel,et al.  The most ancient bark beetle known: a new tribe, genus and species from Lebanese amber (Coleoptera, Curculionidae, Scolytinae) , 2009 .

[3]  D. Grimaldi,et al.  Diversity and phylogeny of the Mesozoic wasp family Stigmaphronidae (Hymenoptera: Ceraphronoidea) , 2009 .

[4]  Gabriele Armbrecht,et al.  Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD Official Positions. , 2008, Journal of clinical densitometry : the official journal of the International Society for Clinical Densitometry.

[5]  Joseph J Gillespie,et al.  Secondary structure alignment and direct optimization of 28S rDNA sequences provide limited phylogenetic resolution in bark and ambrosia beetles (Curculionidae: Scolytinae) , 2007 .

[6]  Paul M. Choate,et al.  Evolution of the Insects , 2006 .

[7]  K. Price,et al.  Regional vegetation die-off in response to global-change-type drought. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[8]  D. Grimaldi,et al.  Primitive New Ants in Cretaceous Amber from Myanmar, New Jersey, and Canada (Hymenoptera: Formicidae) , 2005 .

[9]  J. Simpson,et al.  Eusociality in the beetleAustroplatypus incompertus (Coleoptera: Curculionidae) , 1992, Naturwissenschaften.

[10]  D. Grimaldi,et al.  Revision of the bizarre Mesozoic scorpionflies in the Pseudopolycentropodidae (Mecopteroidea) , 2005 .

[11]  D. Grimaldi,et al.  THE MESOZOIC FAMILY ARCHIZELMIRIDAE (DIPTERA: INSECTA) , 2003, Journal of Paleontology.

[12]  R. Cruickshank,et al.  Geology of an amber locality in the Hukawng Valley, Northern Myanmar , 2003 .

[13]  D. Grimaldi,et al.  The First Mesozoic Zoraptera (Insecta) , 2002 .

[14]  D. Grimaldi,et al.  Fossiliferous Cretaceous Amber from Myanmar (Burma): Its Rediscovery, Biotic Diversity, and Paleontological Significance , 2002 .

[15]  M. Engel The Smallest Snakefly (Raphidioptera: Mesoraphidiidae): A New Species in Cretaceous Amber from Myanmar, with a Catalog of Fossil Snakeflies , 2002 .

[16]  A. V. Gorokhov,et al.  History of Insects , 2002, Springer Netherlands.

[17]  B. Farrell,et al.  Evolutionary origins of Gondwanan interactions: How old are Araucaria beetle herbivores? , 2001 .

[18]  B. LePage,et al.  A Dendroctonus bark engraving (Coleoptera: Scolytidae) from a middle Eocene Larix (Coniferales: Pinaceae): early or delayed colonization? , 2001, American journal of botany.

[19]  Brian D. Farrell,et al.  THE EVOLUTION OF AGRICULTURE IN BEETLES (CURCULIONIDAE: SCOLYTINAE AND PLATYPODINAE) , 2001, Evolution; international journal of organic evolution.

[20]  E. C. Zimmerman,et al.  Platypodidae under scrutiny , 2000 .

[21]  Brian D. Farrell,et al.  Evolutionary assembly of the conifer fauna: distinguishing ancient from recent associations in bark beetles , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[22]  D. Grimaldi,et al.  Brachyceran Diptera in Cretaceous ambers and Mesozoic diversification of the Eremoneura. , 1999 .

[23]  Monica G. Turner,et al.  Prefire Heterogeneity, Fire Severity, and Early Postfire Plant Reestablishment in Subalpine Forests , 1999 .

[24]  G. Rothwell,et al.  Pityostrobus milleri sp. nov., a pinaceous cone from the Lower Cretaceous (Aptian) of southwestern Russia , 1998 .

[25]  A. Marvaldi Higher Level Phylogeny of Curculionidae (Coleoptera: Curculionoidea) based mainly on Larval Characters, with Special Reference to Broad‐Nosed Weevils , 1997 .

[26]  A. Marvaldi Higher Level Phylogeny of Curculionidae (Coleoptera: Curculionoidea) based mainly on Larval Characte , 1997 .

[27]  K. Raffa,et al.  The Evolution of Social Behavior in Insects and Arachnids: Interactions among males, females and offspring in bark and ambrosia beetles: the significance of living in tunnels for the evolution of social behavior , 1997 .

[28]  F. Maytag Evolution , 1996, Arch. Mus. Informatics.

[29]  G. Poinar,et al.  Scolytidae and Platypodidae (Coleoptera) from Dominican Republic Amber , 1994 .

[30]  D. E. Bright,et al.  A Catalog of Scolytidae and Platypodidae (Coleoptera), Part 2: Taxonomic Index. Volume A , 1992 .

[31]  S. Wood A reclassification of the genera of Scolytidae (Coleoptera) , 1986 .

[32]  L. Kirkendall The evolution of mating systems in bark and ambrosia beetles (Coleoptera: Scolytidae and Platypodidae) , 1983 .

[33]  S. Wood The Bark and Ambrosia Beetles of North and Central America (Coleoptera: Scolytidae), a Taxonomic Monograph , 1982 .

[34]  R. L. Furniss,et al.  Western forest insects , 1977 .

[35]  T. Cockerell Arthropods in Burmese amber , 1917 .