Answer Set Programming for Continuous Domains: A Fuzzy Logic Approach

Answer set programming (ASP) is a declarative language tailored towards solving combinatorial optimization problems. It has been successfully applied to e.g. planning problems, configuration and verification of software, diagnosis and database repairs. However, ASP is not directly suitable for modeling problems with continuous domains. Such problems occur naturally in diverse fields such as the design of gas and electricity networks, computer vision and investment portfolios. To overcome this problem we study FASP, a combination of ASP with fuzzy logic -- a class of manyvalued logics that can handle continuity. We specifically focus on the following issues: 1. An important question when modeling continuous optimization problems is how we should handle overconstrained problems, i.e. problems that have no solutions. In many cases we can opt to accept an imperfect solution, i.e. a solution that does not satisfy all the stated rules (constraints). However, this leads to the question: what imperfect solutions should we choose? We investigate this question and improve upon the state-of-the-art by proposing an approach based on aggregation functions. 2. Users of a programming language often want a rich language that is easy to model in. However, implementers and theoreticians prefer a small language that is easy to implement and reason about. We create a bridge between these two desires by proposing a small core language for FASP and by showing that this language is capable of expressing many of its common extensions such as constraints, monotonically decreasing functions, aggregators, S-implicators and classical negation. 3. A well-known technique for solving ASP consists of translating a program P to a propositional theory whose models exactly correspond to the answer sets of P. We show how this technique can be generalized to FASP, paving the way to implement efficient fuzzy answer set solvers that can take advantage of existing fuzzy reasoners.

[1]  Francesco Scarcello,et al.  Abductive logic programs with penalization: semantics, complexity and implementation , 2003, Theory and Practice of Logic Programming.

[2]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[3]  Thomas Lukasiewicz,et al.  Many-Valued Disjunctive Logic Programs with Probabilistic Semantics , 1999, LPNMR.

[4]  Robert C. Moore Semantical Considerations on Nonmonotonic Logic , 1985, IJCAI.

[5]  Emil L. Post Introduction to a General Theory of Elementary Propositions , 1921 .

[6]  Stefan Woltran,et al.  A polynomial translation of logic programs with nested expressions into disjunctive logic programs: preliminary report , 2002, NMR.

[7]  V. S. Subrahmanian Amalgamating knowledge bases , 1994, TODS.

[8]  Reijo Sulonen,et al.  Representing Configuration Knowledge With Weight Constraint Rules , 2001, Answer Set Programming.

[9]  Michael Gelfond,et al.  Classical negation in logic programs and disjunctive databases , 1991, New Generation Computing.

[10]  Danny De Schreye,et al.  Answer Set Planning , 1999 .

[11]  Umberto Straccia,et al.  Query Answering under the Any-World Assumption for Normal Logic Programs , 2006, KR.

[12]  Didier Dubois,et al.  Advances in the Egalitarist Approach to Decision-Making in a Fuzzy Environment , 2001 .

[13]  M. Ojeda‐Aciego,et al.  On the Measure of Instability in Normal Residuated Logic Programs , 2010 .

[14]  Martine De Cock,et al.  An introduction to fuzzy answer set programming , 2007, Annals of Mathematics and Artificial Intelligence.

[15]  Laks V. S. Lakshmanan,et al.  Modeling Uncertainty in Deductive Databases , 1994, DEXA.

[16]  Anil Nerode,et al.  Annotated Nonmonotonic Rule Systems , 1997, Theor. Comput. Sci..

[17]  Nematollaah Shiri-Varnaamkhaasti Towards a generalized theory of deductive databases with uncertainty , 1997 .

[18]  Umberto Straccia,et al.  Query Answering in Normal Logic Programs Under Uncertainty , 2005, ECSQARU.

[19]  Martine De Cock,et al.  Computing Fuzzy Answer Sets Using dlvhex , 2007, ICLP.

[20]  Bernard,et al.  Oplossen van vaagrelationele vergelijkingen : een ordetheoretische benadering , 1995 .

[21]  Matthias Ragaz Die Unentscheidbarkeit der einstelligen unendlichwertigen Prädikatenlogik , 1983, Arch. Math. Log..

[22]  Gerhard Brewka,et al.  Complex Preferences for Answer Set Optimization , 2004, KR.

[23]  Miroslaw Truszczynski,et al.  Pbmodels - Software to Compute Stable Models by Pseudoboolean Solvers , 2005, LPNMR.

[24]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[25]  S. C. Kleene Review: Stanislaw Jaskowski, Recherches sur le Systeme de la Logique Intuitioniste , 1937 .

[26]  Ronald Fagin,et al.  A formula for incorporating weights into scoring rules , 2000, Theor. Comput. Sci..

[27]  Luís Moniz Pereira,et al.  Monotonic and Residuated Logic Programs , 2001, ECSQARU.

[28]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[29]  V. S. Subrahmanian,et al.  Hybrid Probabilistic Programs , 2000, J. Log. Program..

[30]  Manuel Ojeda-Aciego,et al.  Measuring Instability in Normal Residuated Logic Programs: Discarding Information , 2010, IPMU.

[31]  Laks V. S. Lakshmanan,et al.  A Parametric Approach to Deductive Databases with Uncertainty , 1996, Logic in Databases.

[32]  Tommi Syrjänen,et al.  Cardinality Constraint Programs , 2004, JELIA.

[33]  Umberto Straccia,et al.  Managing Uncertainty and Vagueness in Description Logics, Logic Programs and Description Logic Programs , 2008, Reasoning Web.

[34]  Laks V. S. Lakshmanan,et al.  Uncertain Deductive Databases: A Hybrid Approach , 1997, Inf. Syst..

[35]  Manuel Ojeda-Aciego,et al.  Termination of logic programs with imperfect information: applications and query procedure , 2007, J. Appl. Log..

[36]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[37]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[38]  Rina Dechter,et al.  Propositional semantics for disjunctive logic programs , 1994, Annals of Mathematics and Artificial Intelligence.

[39]  Francesco Scarcello,et al.  BackJumping techniques for rules instantiation in the DLV system , 2004, NMR.

[40]  Louise Schmir Hay,et al.  Axiomatization of the infinite-valued predicate calculus , 1963, Journal of Symbolic Logic.

[41]  Witold Lukaszewicz Considerations on Default Logic , 1984, NMR.

[42]  Melvin Fitting,et al.  Bilattices and the Semantics of Logic Programming , 1991, J. Log. Program..

[43]  Cristinel Mateis Quantitative Disjunctive Logic Programming: Semantics and Computation , 2000, AI Commun..

[44]  Thomas Lukasiewicz Fuzzy Description Logic Programs under the Answer Set Semantics for the Semantic Web , 2006, 2006 Second International Conference on Rules and Rule Markup Languages for the Semantic Web (RuleML'06).

[45]  Gert de Cooman,et al.  Order norms on bounded partially ordered sets. , 1994 .

[46]  Dov M. Gabbay,et al.  The Many Valued and Nonmonotonic Turn in Logic , 2007, Handbook of the History of Logic.

[47]  Michael Dummett,et al.  A propositional calculus with denumerable matrix , 1959, Journal of Symbolic Logic (JSL).

[48]  Wolfgang Faber,et al.  Planning under Incomplete Knowledge , 2000, Computational Logic.

[49]  Manuel Ojeda-Aciego,et al.  On Coherence and Consistence in Fuzzy Answer Set Semantics for Residuated Logic Programs , 2009, WILF.

[50]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .

[51]  Umberto Straccia,et al.  A Top-Down Query Answering Procedure for Normal Logic Programs Under the Any-World Assumption , 2007, ECSQARU.

[52]  Friedrich L. Bauer,et al.  The “Plankalkül” of Konrad Zuse: a forerunner of today's programming languages , 1972, CACM.

[53]  Ehud Y. Shapiro,et al.  Logic Programs With Uncertainties: A Tool for Implementing Rule-Based Systems , 1983, IJCAI.

[54]  Marina De Vos,et al.  Choice Logic Programs and Nash Equilibria in Strategic Games , 1999, CSL.

[55]  Cristinel Mateis Extending Disjunctive Logic Programming by T-norms , 1999, LPNMR.

[56]  Victor W. Marek,et al.  Stable models and an alternative logic programming paradigm , 1998, The Logic Programming Paradigm.

[57]  Robert McNaughton,et al.  A Theorem About Infinite-Valued Sentential Logic , 1951, J. Symb. Log..

[58]  Kurt Mehlhorn Assigning Papers to Referees , 2009, ICALP.

[59]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[60]  V. S. Subrahmanian,et al.  Stable Semantics for Probabilistic Deductive Databases , 1994, Inf. Comput..

[61]  M. K. Luhandjula Compensatory operators in fuzzy linear programming with multiple objectives , 1982 .

[62]  Fangzhen Lin,et al.  ASSAT: computing answer sets of a logic program by SAT solvers , 2002, Artif. Intell..

[63]  Didier Dubois,et al.  Weighted minimum and maximum operations in fuzzy set theory , 1986, Inf. Sci..

[64]  Martine De Cock,et al.  Fuzzy Answer Set Programming with Literal Preferences , 2009, IFSA/EUSFLAT Conf..

[65]  Vladimir Lifschitz,et al.  Answer set programming and plan generation , 2002, Artif. Intell..

[66]  Lluis Godo,et al.  Basic Fuzzy Logic is the logic of continuous t-norms and their residua , 2000, Soft Comput..

[67]  Ronald R. Yager,et al.  Structure of Uninorms , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[68]  Martin Gebser,et al.  GrinGo : A New Grounder for Answer Set Programming , 2007, LPNMR.

[69]  Didier Dubois,et al.  Towards Possibilistic Logic Programming , 1991, ICLP.

[70]  Laks V. S. Lakshmanan,et al.  An Epistemic Foundation for Logic Programming with Uncertainty , 1994, FSTTCS.

[71]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[72]  Wolfgang Faber,et al.  The Diagnosis Frontend of the dlv System , 1999, AI Commun..

[73]  Umberto Straccia,et al.  On Fixed-Points of Multivalued Functions on Complete Lattices and Their Application to Generalized Logic Programs , 2008, SIAM J. Comput..

[74]  Umberto Straccia,et al.  The Well-Founded Semantics in Normal Logic Programs with Uncertainty , 2002, FLOPS.

[75]  Manuel Ojeda-Aciego,et al.  Towards a Fuzzy Answer Set Semantics for Residuated Logic Programs , 2008, 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[76]  Keith L. Clark,et al.  Negation as Failure , 1987, Logic and Data Bases.

[77]  Umberto Straccia Annotated Answer Set Programming , 2006 .

[78]  Luís Moniz Pereira,et al.  Hybrid Probabilistic Logic Programs as Residuated Logic Programs , 2000, Stud Logica.

[79]  V. S. Subrahmanian,et al.  A semantical framework for supporting subjective and conditional probabilities in deductive databases , 1990, Journal of Automated Reasoning.

[80]  Thomas Lukasiewicz,et al.  Probabilistic Logic Programming , 1998, ECAI.

[81]  Laks V. S. Lakshmanan,et al.  Probabilistic Deductive Databases , 1994, ILPS.

[82]  Didier Dubois,et al.  Refinements of the maximin approach to decision-making in a fuzzy environment , 1996, Fuzzy Sets Syst..

[83]  Umberto Straccia,et al.  Approximate well-founded semantics, query answering and generalized normal logic programs over lattices , 2009, Annals of Mathematics and Artificial Intelligence.

[84]  Norbert Fuhr Probabilistic Datalog: implementing logical information retrieval for advanced applications , 2000 .

[85]  Georg Gottlob,et al.  Expressive Power and Complexity of Disjunctive Datalog under the Stable Model Semantics , 1994, IS/KI.

[86]  Yuliya Lierler,et al.  SAT-Based Answer Set Programming , 2004, AAAI.

[87]  Reiner Hähnle,et al.  Many-valued logic and mixed integer programming , 1994, Annals of Mathematics and Artificial Intelligence.

[88]  Martin Gebser,et al.  The Conflict-Driven Answer Set Solver clasp: Progress Report , 2009, LPNMR.

[89]  V. S. Subrahmanian,et al.  Theory of Generalized Annotated Logic Programming and its Applications , 1992, J. Log. Program..

[90]  Robert A. Kowalski,et al.  The Semantics of Predicate Logic as a Programming Language , 1976, JACM.

[91]  Carlos Viegas Damsio,et al.  Sorted Monotonic Logic Programs and their Embeddings , 2004 .

[92]  Umberto Straccia,et al.  Epistemic foundation of stable model semantics , 2004, Theory and Practice of Logic Programming.

[93]  Umberto Straccia,et al.  Top-k Retrieval in Description Logic Programs Under Vagueness for the Semantic Web , 2007, SUM.

[94]  Umberto Straccia,et al.  The Approximate Well-Founded Semantics for Logic Programs with Uncertainty , 2003, MFCS.

[95]  Ilkka Niemelä,et al.  Developing a Declarative Rule Language for Applications in Product Configuration , 1999, PADL.

[96]  Igor Stéphan,et al.  Possibilistic uncertainty handling for answer set programming , 2006, Annals of Mathematics and Artificial Intelligence.

[97]  Martine De Cock,et al.  Finite Satisfiability in Infinite-Valued Lukasiewicz Logic , 2009, SUM.

[98]  Ilkka Niemelä,et al.  Logic programs with stable model semantics as a constraint programming paradigm , 1999, Annals of Mathematics and Artificial Intelligence.

[99]  Tommi Syrjänen Omega-Restricted Logic Programs , 2001, LPNMR.

[100]  Teresa Alsinet,et al.  Two formalisms of extended possibilistic logic programming with context-dependent fuzzy unification: a comparative description , 2002, UNCL@ICALP.

[101]  Michael Kifer,et al.  On the Semantics of Rule-Based Expert Systems with Uncertainty , 1988, ICDT.

[102]  Vladimir Lifschitz,et al.  Answer Sets in General Nonmonotonic Reasoning (Preliminary Report) , 1992, KR.

[103]  Mitsuru Ishizuka,et al.  Prolog-ELF incorporating fuzzy logic , 2009, New Generation Computing.

[104]  Umberto Straccia,et al.  Any-world assumptions in logic programming , 2005, Theor. Comput. Sci..

[105]  I. Turksen Interval-valued fuzzy sets and “compensatory AND” , 1992 .

[106]  Emad Saad,et al.  Probabilistic Reasoning by SAT Solvers , 2009, ECSQARU.

[107]  Hung T. Nguyen,et al.  Fundamentals of Uncertainty Calculi with Applications to Fuzzy Inference , 1994 .

[108]  Tru H. Cao,et al.  Annotated fuzzy logic programs , 2000, Fuzzy Sets Syst..

[109]  Umberto Straccia,et al.  A Fuzzy Description Logic with Product T-norm , 2007, 2007 IEEE International Fuzzy Systems Conference.

[110]  Drew McDermott,et al.  Nonmonotonic Logic II: Nonmonotonic Modal Theories , 1982, JACM.

[111]  Bruno Scarpellini Die Nichtaxiomatisierbarkeit des Unendlichwertigen Pradikatenkalkuls von Lukasiewicz , 1962, J. Symb. Log..

[112]  Maurice Bruynooghe,et al.  Translation of Aggregate Programs to Normal Logic Programs , 2003, Answer Set Programming.

[113]  Alfred Horn,et al.  Logic with truth values in A linearly ordered heyting algebra , 1969, Journal of Symbolic Logic.

[114]  Francesco Buccafurri,et al.  Enhancing Disjunctive Datalog by Constraints , 2000, IEEE Trans. Knowl. Data Eng..

[115]  Stephen Cole Kleene,et al.  On notation for ordinal numbers , 1938, Journal of Symbolic Logic.

[116]  Manuel Ojeda-Aciego,et al.  Sorted Multi-adjoint Logic Programs: Termination Results and Applications , 2004, JELIA.

[117]  Peter Vojtás,et al.  Fuzzy logic programming , 2001, Fuzzy Sets Syst..

[118]  D. Dubois,et al.  Fundamentals of fuzzy sets , 2000 .

[119]  Thomas Schiex,et al.  Valued Constraint Satisfaction Problems: Hard and Easy Problems , 1995, IJCAI.

[120]  Kenneth A. Ross,et al.  The well-founded semantics for general logic programs , 1991, JACM.

[121]  Igor Stéphan,et al.  Possibilistic Stable Models , 2005, IJCAI.

[122]  C. Chang,et al.  A new proof of the completeness of the Łukasiewicz axioms , 1959 .

[123]  M. H. van Emden,et al.  Quantitative Deduction and its Fixpoint Theory , 1986, J. Log. Program..

[124]  François Fages,et al.  Consistency of Clark's completion and existence of stable models , 1992, Methods Log. Comput. Sci..