Multi-level Big Data Content Services for Mental Health Care

Systematic brain informatics studies on mental health care produce various health big data of mental disorders and bring new requirements on the data acquisition and computing, from the data level to the information, knowledge and wisdom levels. Aiming at these challenges, this chapter proposes a brain and health big data center. A global content integrating mechanism and a content-oriented cloud service architecture are developed. The illustrative example demonstrates significance and usefulness of the proposed approach.

[1]  Han Zhong,et al.  Developing a Brain Informatics Provenance Model , 2013, Brain and Health Informatics.

[2]  Ning Zhong,et al.  Impending Brain Informatics Research from Web Intelligence Perspective , 2006, Int. J. Inf. Technol. Decis. Mak..

[3]  Shengfu Lu,et al.  Impairments of Working Memory for Object-Location Associations in Depression , 2014 .

[4]  O. Rosso,et al.  The Australian EEG Database , 2005, Clinical EEG and neuroscience.

[5]  Andrzej Skowron,et al.  Interactive Rough-Granular Computing in Wisdom Technology , 2013, AMT.

[6]  Jeff Shrager,et al.  Cancer: A Computational Disease that AI Can Cure , 2011, AI Mag..

[7]  Gang Wang,et al.  The Change of Resting EEG in Depressive Disorders , 2013, Brain and Health Informatics.

[8]  Hakima Chaouchi,et al.  The Internet of things : connecting objects to the web , 2013 .

[9]  Andrzej Skowron,et al.  Interactive computations: toward risk management in interactive intelligent systems , 2013, Natural Computing.

[10]  Randy H. Katz,et al.  A view of cloud computing , 2010, CACM.

[11]  Han Zhong,et al.  A Brain Informatics Research Recommendation System , 2014, Brain Informatics and Health.

[12]  Yiyu Yao,et al.  DBLP-SSE: A DBLP Search Support Engine , 2009, 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology.

[13]  Winston A Hide,et al.  Big data: The future of biocuration , 2008, Nature.

[14]  Wenji Mao,et al.  Supporting Global Collective Intelligence via Artificial Intelligence , 2014, IEEE Intell. Syst..

[15]  Jianhui Chen,et al.  Toward the Data-Brain Driven Systematic Brain Data Analysis , 2013, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[16]  Leilani Battle,et al.  Building the Internet of Things Using RFID: The RFID Ecosystem Experience , 2009, IEEE Internet Computing.

[17]  Vlad Stirbu,et al.  Towards a RESTful Plug and Play Experience in the Web of Things , 2008, 2008 IEEE International Conference on Semantic Computing.

[18]  Randy H. Katz,et al.  Above the Clouds: A Berkeley View of Cloud Computing , 2009 .

[19]  Ning Zhong,et al.  Agent-Enriched Data Mining: A Case Study in Brain Informatics , 2009, IEEE Intelligent Systems.

[20]  Inderveer Chana,et al.  Cloud based intelligent system for delivering health care as a service , 2014, Comput. Methods Programs Biomed..

[21]  Wei Chen,et al.  Epilepsy analytic system with cloud computing , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[22]  Steven H. Brown,et al.  Evaluation of the content coverage of SNOMED CT: ability of SNOMED clinical terms to represent clinical problem lists. , 2006, Mayo Clinic proceedings.

[23]  Wenbin Li,et al.  WaaS: Wisdom as a Service , 2014, IEEE Intell. Syst..

[24]  Tharam S. Dillon,et al.  Web of Things as a Framework for Ubiquitous Intelligence and Computing , 2009, UIC.

[25]  Yiyu Yao,et al.  User-centric query refinement and processing using granularity-based strategies , 2010, Knowledge and Information Systems.

[26]  Jianhua Ma,et al.  Research challenges and perspectives on Wisdom Web of Things (W2T) , 2010, The Journal of Supercomputing.

[27]  Andrzej Skowron,et al.  Toward Interactive Computations: A Rough-Granular Approach , 2010, Advances in Machine Learning II.

[28]  Brian Hayes,et al.  What Is Cloud Computing? , 2019, Cloud Technologies.

[29]  Yiyu Yao,et al.  Web Intelligence Meets Brain Informatics , 2006, WImBI.

[30]  Jianhui Chen,et al.  Data-Brain Modeling Based on Brain Informatics Methodology , 2008, 2008 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology.

[31]  David S. Wishart,et al.  DrugBank 3.0: a comprehensive resource for ‘Omics’ research on drugs , 2010, Nucleic Acids Res..

[32]  Yogesh L. Simmhan,et al.  A survey of data provenance in e-science , 2005, SGMD.

[33]  Salvatore Venticinque,et al.  Automatic and Dynamic Composition of Web Services Using Ontologies , 2007, AWIC.

[34]  Olivier Curé On the design of a self-medication web application built on linked open data , 2014, J. Web Semant..

[35]  Zhaohui Wu,et al.  Cyborg Intelligence: Towards Bio-Machine Intelligent Systems , 2014, IEEE Intelligent Systems.

[36]  Guinevere F. Eden,et al.  Meta-Analysis of the Functional Neuroanatomy of Single-Word Reading: Method and Validation , 2002, NeuroImage.

[37]  Arthur W. Toga,et al.  Is it time to re-prioritize neuroimaging databases and digital repositories? , 2009, NeuroImage.

[38]  Jianhui Chen,et al.  Constructing a New-Style Conceptual Model of Brain Data for Systematic Brain Informatics , 2012, IEEE Transactions on Knowledge and Data Engineering.

[39]  Yiyu Yao,et al.  Web Intelligence (WI) , 2000, Proceedings 24th Annual International Computer Software and Applications Conference. COMPSAC2000.

[40]  Takahiro Kawamura,et al.  Semantic Matching of Web Services Capabilities , 2002, SEMWEB.

[41]  Jiming Liu,et al.  Web Intelligence (WI) , 2001, Web Intelligence.

[42]  Jianhui Chen,et al.  Data-Brain Modeling for Systematic Brain Informatics , 2009, Brain Informatics.

[43]  J B Woodward,et al.  The Functional Magnetic Resonance Imaging Data Center (fMRIDC): the challenges and rewards of large-scale databasing of neuroimaging studies. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.