A review of non-stationary spatial methods for geodetic least-squares collocation

This paper reviews a field that is herein termed spatial ‘non-stationarity’, which is specifically concerned with non-stationarity in the geodetic theory of least-squares collocation (LSC). In practice, many geodesists rely on stationary assumptions in LSC, i.e. using a constant mean and isotropic and spatially invariant covariance for estimation and prediction of geodetic quantities. However, new theories in spatial statistics and geostatistics allow for better statistical methodologies to be used in geodesy. The aim of this paper is to introduce these methodologies and adapt them for dealing with non-stationarity in LSC.

[1]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[2]  Richard H. Rapp,et al.  Closed Covariance Expressions for Gravity Anomalies, Geoid Undulations, and Deflections of the Vertical Implied by Anomaly Degree Variance Models. , 1974 .

[3]  Kurt Lambeck,et al.  The Perth Basin: a possible framework for its formation and evolution , 1987 .

[4]  H. Wackernagle,et al.  Multivariate geostatistics: an introduction with applications , 1998 .

[5]  AN INTRODUCTION TO LEAST-SQUARES COLLOCATION , 1987 .

[6]  Montserrat Fuentes,et al.  A high frequency kriging approach for non‐stationary environmental processes , 2001 .

[7]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  W. Dunsmuir,et al.  Estimation of nonstationary spatial covariance structure , 2002 .

[9]  A. Haar Zur Theorie der orthogonalen Funktionensysteme , 1910 .

[10]  F. Barthelmes,et al.  Use of Point Masses on Optimized Positions for the Approximation of the Gravity Field , 1991 .

[11]  C. Tscherning Geoid Determination by Least-square Collocation Using GRAVSOFT , 1994 .

[12]  Richard J. Smith,et al.  Estimating Nonstationary Spatial Correlations , 1996 .

[13]  Olivier Perrin,et al.  Identifiability for non-stationary spatial structure , 1999 .

[14]  Peter M. Atkinson,et al.  Non-stationary variogram models for geostatistical sampling optimisation: An empirical investigation using elevation data , 2007, Comput. Geosci..

[15]  C. C. Tscherning Construction of anisotropic covariance functions using Riesz-representers , 1999 .

[16]  C. Kotsakis The multiresolution character of collocation , 2000 .

[17]  Collocation in reproducing kernel Hilbertspaces of a multiscale analysis , 1998 .

[18]  J. Andrew Royle,et al.  Multiresolution models for nonstationary spatial covariance functions , 2002 .

[19]  P. Collier,et al.  Options and Strategies for Transition to GDA94 , 1997 .

[20]  Donald E. Myers,et al.  Basic Linear Geostatistics , 1998, Technometrics.

[21]  David Higdon,et al.  Non-Stationary Spatial Modeling , 2022, 2212.08043.

[22]  Philip A. Collier,et al.  Distortion Modelling and the Transition to GDA94 , 1998 .

[23]  F. Sansò,et al.  A discussion on the Wiener–Kolmogorov prediction principle with easy-to-compute and robust variants , 2003 .

[24]  Pavel Pudil,et al.  Introduction to Statistical Pattern Recognition , 2006 .

[25]  Patching local empirical covariance functions — A problem in altimeter data processing , 2005 .

[26]  R. Munn,et al.  The Design of Air Quality Monitoring Networks , 1981 .

[27]  M. M. Chin,et al.  Gravity empirical covariance values for the continental United States , 1984 .

[28]  H. Moritz Advanced Physical Geodesy , 1980 .

[29]  Mike Dentith,et al.  Inversion of potential field data by genetic algorithms , 1997 .

[30]  David M. Holland,et al.  Spatial Prediction of Sulfur Dioxide in the Eastern United States , 1999 .

[31]  Rey-Jer You,et al.  Coordinate Transformation between Two Geodetic Datums of Taiwan by Least-Squares Collocation , 2006 .

[32]  P. Guttorp,et al.  Bayesian estimation of semi‐parametric non‐stationary spatial covariance structures , 2001 .

[33]  Peter Guttorp,et al.  Advances in Modeling and Inference for Environmental Processes with Nonstationary Spatial Covariance , 2001 .

[34]  Peter M. Atkinson,et al.  Non‐stationary Approaches for Mapping Terrain and Assessing Prediction Uncertainty , 2002, Trans. GIS.

[35]  A Wavelet Solution to 1D Non-Stationary Collocation With an Extension to the 2D Case , 2001 .

[36]  Christopher J Paciorek,et al.  Spatial modelling using a new class of nonstationary covariance functions , 2006, Environmetrics.

[37]  Tuning a gravimetric quasigeoid to GPS-levelling by non-stationary least-squares collocation , 2010 .

[38]  M. Sideris,et al.  The Long Road from Deterministic Collocation to Multiresolution Approximation , 1999 .

[39]  R. You Local Geoid Improvement Using GPS and Leveling Data: Case Study , 2006 .

[40]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[41]  P. Guttorp,et al.  Nonparametric Estimation of Nonstationary Spatial Covariance Structure , 1992 .

[42]  Noel A. C. Cressie,et al.  Statistics for Spatial Data: Cressie/Statistics , 1993 .

[43]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[44]  Tomaž Ambrožič,et al.  GPS-derived Geoid using Artificial Neural Network and Least Squares Collocation , 2006 .

[45]  Neda Darbeheshti,et al.  Non-stationary covariance function modelling in 2D least-squares collocation , 2009 .

[46]  W. Keller A wavelet approach to non-stationary collocation , 2000 .