Multilocus Sequence Typing as a Replacement for Serotyping in Salmonella enterica

Salmonella enterica subspecies enterica is traditionally subdivided into serovars by serological and nutritional characteristics. We used Multilocus Sequence Typing (MLST) to assign 4,257 isolates from 554 serovars to 1092 sequence types (STs). The majority of the isolates and many STs were grouped into 138 genetically closely related clusters called eBurstGroups (eBGs). Many eBGs correspond to a serovar, for example most Typhimurium are in eBG1 and most Enteritidis are in eBG4, but many eBGs contained more than one serovar. Furthermore, most serovars were polyphyletic and are distributed across multiple unrelated eBGs. Thus, serovar designations confounded genetically unrelated isolates and failed to recognize natural evolutionary groupings. An inability of serotyping to correctly group isolates was most apparent for Paratyphi B and its variant Java. Most Paratyphi B were included within a sub-cluster of STs belonging to eBG5, which also encompasses a separate sub-cluster of Java STs. However, diphasic Java variants were also found in two other eBGs and monophasic Java variants were in four other eBGs or STs, one of which is in subspecies salamae and a second of which includes isolates assigned to Enteritidis, Dublin and monophasic Paratyphi B. Similarly, Choleraesuis was found in eBG6 and is closely related to Paratyphi C, which is in eBG20. However, Choleraesuis var. Decatur consists of isolates from seven other, unrelated eBGs or STs. The serological assignment of these Decatur isolates to Choleraesuis likely reflects lateral gene transfer of flagellar genes between unrelated bacteria plus purifying selection. By confounding multiple evolutionary groups, serotyping can be misleading about the disease potential of S. enterica. Unlike serotyping, MLST recognizes evolutionary groupings and we recommend that Salmonella classification by serotyping should be replaced by MLST or its equivalents.

[1]  Carina M. Schlebusch,et al.  Age of the Association between Helicobacter pylori and Man , 2012, PLoS pathogens.

[2]  Otto X. Cordero,et al.  Population Genomics of Early Events in the Ecological Differentiation of Bacteria , 2012, Science.

[3]  Sophie S Abby,et al.  Lateral gene transfer as a support for the tree of life , 2012, Proceedings of the National Academy of Sciences.

[4]  C. Mazzoni,et al.  Population structure of the Yersinia pseudotuberculosis complex according to multilocus sequence typing. , 2011, Environmental microbiology.

[5]  T. Cebula,et al.  Genomic anatomy of Escherichia coli O157:H7 outbreaks , 2011, Proceedings of the National Academy of Sciences.

[6]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[7]  M. Wiedmann,et al.  Genome sequencing reveals diversification of virulence factor content and possible host adaptation in distinct subpopulations of Salmonella enterica , 2011, BMC Genomics.

[8]  P. Donnelly,et al.  Recombination and Population Structure in Salmonella enterica , 2011, PLoS genetics.

[9]  R. Dieckmann,et al.  Rapid Screening of Epidemiologically Important Salmonella enterica subsp. enterica Serovars by Whole-Cell Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry , 2011, Applied and Environmental Microbiology.

[10]  S. Sheppard,et al.  Introgression in the genus Campylobacter: generation and spread of mosaic alleles , 2011, Microbiology.

[11]  C. Bull,et al.  Substructure within Salmonella enterica subsp. enterica Isolates from Australian Wildlife , 2011, Applied and Environmental Microbiology.

[12]  P. Barrow,et al.  Pullorum disease and fowl typhoid—new thoughts on old diseases: a review , 2011, Avian pathology : journal of the W.V.P.A.

[13]  Martin C. J. Maiden,et al.  BIGSdb: Scalable analysis of bacterial genome variation at the population level , 2010, BMC Bioinformatics.

[14]  Giovanna Morelli,et al.  Phylogenetic diversity and historical patterns of pandemic spread of Yersinia pestis , 2010, Nature Genetics.

[15]  W. Rabsch,et al.  Evolution and Population Structure of Salmonella enterica Serovar Newport , 2010, Journal of Bacteriology.

[16]  N. Williams,et al.  Multi‐locus sequence typing of Salmonella enterica serovar Typhimurium isolates from wild birds in northern England suggests host‐adapted strain , 2010, Letters in applied microbiology.

[17]  Giovanna Morelli,et al.  Microevolution of Helicobacter pylori during Prolonged Infection of Single Hosts and within Families , 2010, PLoS genetics.

[18]  W. Rabsch,et al.  Characterisation of multidrug-resistant Salmonella Typhimurium 4,[5],12:i:- DT193 strains carrying a novel genomic island adjacent to the thrW tRNA locus. , 2010, International journal of medical microbiology : IJMM.

[19]  J. Wain,et al.  Comparison of two DNA microarrays for detection of plasmid-mediated antimicrobial resistance and virulence factor genes in clinical isolates of Enterobacteriaceae and non-Enterobacteriaceae , 2010, International journal of antimicrobial agents.

[20]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[21]  M. Levine,et al.  Identification by PCR of Non-typhoidal Salmonella enterica Serovars Associated with Invasive Infections among Febrile Patients in Mali , 2010, PLoS neglected tropical diseases.

[22]  E. Nielsen,et al.  Phage typing of Salmonella Typhimurium - is it still a useful tool for surveillance and outbreak investigation? , 2010, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[23]  G. Dougan,et al.  Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. , 2009, Genome research.

[24]  M. Wiedmann,et al.  Salmonella enterica Serotype 4,5,12:i:−, an Emerging Salmonella Serotype That Represents Multiple Distinct Clones , 2009, Journal of Clinical Microbiology.

[25]  J. Calva,et al.  Association of virulence plasmid and antibiotic resistance determinants with chromosomal multilocus genotypes in Mexican Salmonella enterica serovar Typhimurium strains , 2009, BMC Microbiology.

[26]  F. Aarestrup,et al.  Occurrence and characterization of Salmonella enterica subspecies enterica serovar 9,12:l,v:- strains from Bulgaria, Denmark, and the United States , 2009, European Journal of Clinical Microbiology & Infectious Diseases.

[27]  J. Frye,et al.  High-Throughput Molecular Determination of Salmonella enterica Serovars by Use of Multiplex PCR and Capillary Electrophoresis Analysis , 2009, Journal of Clinical Microbiology.

[28]  Jane W. Marsh,et al.  Integron-mediated Multidrug Resistance in a Global Collection of Nontyphoidal Salmonella enterica Isolates , 2009, Emerging infectious diseases.

[29]  D. Graham,et al.  The Peopling of the Pacific from a Bacterial Perspective , 2009, Science.

[30]  Jukka Corander,et al.  Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations , 2008, BMC Bioinformatics.

[31]  Stefan Niemann,et al.  High Functional Diversity in Mycobacterium tuberculosis Driven by Genetic Drift and Human Demography , 2008, PLoS biology.

[32]  G. Bell,et al.  A Reservoir of Drug-Resistant Pathogenic Bacteria in Asymptomatic Hosts , 2008, PloS one.

[33]  F. Cohan,et al.  The Origins of Ecological Diversity in Prokaryotes , 2008, Current Biology.

[34]  Georgios S. Vernikos,et al.  Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. , 2008, Genome research.

[35]  J. Wain,et al.  High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi , 2008, Nature Genetics.

[36]  M. Wagner,et al.  Microbial diversity and the genetic nature of microbial species , 2008, Nature Reviews Microbiology.

[37]  Rosanna Lagos,et al.  PCR Method To Identify Salmonella enterica Serovars Typhi, Paratyphi A, and Paratyphi B among Salmonella Isolates from the Blood of Patients with Clinical Enteric Fever , 2008, Journal of Clinical Microbiology.

[38]  E. J. Threlfall,et al.  Multiple‐locus variable‐number tandem repeat analysis of Salmonella enterica subsp. enterica serovar Typhimurium: comparison of isolates from pigs, poultry and cases of human gastroenteritis , 2007, Journal of applied microbiology.

[39]  P. Fields,et al.  Methodologies towards the development of an oligonucleotide microarray for determination of Salmonella serotypes. , 2007, Journal of microbiological methods.

[40]  P. Fields,et al.  Multiplex, Bead-Based Suspension Array for Molecular Determination of Common Salmonella Serogroups , 2007, Journal of Clinical Microbiology.

[41]  J. Wain,et al.  Prophage Sequences Defining Hot Spots of Genome Variation in Salmonella enterica Serovar Typhimurium Can Be Used To Discriminate between Field Isolates , 2007, Journal of Clinical Microbiology.

[42]  Thomas R Connor,et al.  Bmc Microbiology Assessing the Reliability of Eburst Using Simulated Populations with Known Ancestry , 2022 .

[43]  D. Falush,et al.  Inference of Bacterial Microevolution Using Multilocus Sequence Data , 2007, Genetics.

[44]  G. Bell,et al.  Genotypic diversity and antimicrobial resistance in asymptomatic Salmonella enterica serotype Typhimurium DT104. , 2007, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[45]  Daniel Falush,et al.  An African origin for the intimate association between humans and Helicobacter pylori , 2007, Nature.

[46]  E. Feil,et al.  The secret life of the multilocus sequence type. , 2007, International journal of antimicrobial agents.

[47]  D. W. Kim,et al.  Isolation of Salmonella enterica subspecies enterica serovar Paratyphi B dT+, or Salmonella Java, from Indonesia and alteration of the d-tartrate fermentation phenotype by disrupting the ORF STM 3356. , 2006, Journal of medical microbiology.

[48]  Mark Achtman,et al.  Evolutionary History of Salmonella Typhi , 2006, Science.

[49]  Paul Keim,et al.  Anthrax, but Not Bacillus anthracis? , 2006, PLoS pathogens.

[50]  Daniel Falush,et al.  Mismatch induced speciation in Salmonella: model and data , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[51]  M. Maiden Multilocus sequence typing of bacteria. , 2006, Annual review of microbiology.

[52]  H. Harbottle,et al.  Comparison of Multilocus Sequence Typing, Pulsed-Field Gel Electrophoresis, and Antimicrobial Susceptibility Typing for Characterization of Salmonella enterica Serotype Newport Isolates , 2006, Journal of Clinical Microbiology.

[53]  Daniel Falush,et al.  Sex and virulence in Escherichia coli: an evolutionary perspective , 2006, Molecular microbiology.

[54]  P. Gerner-Smidt,et al.  Distribution of molecular subtypes within Salmonella enterica serotype Enteritidis phage type 4 and S. Typhimurium definitive phage type 104 in nine European countries, 2000–2004: results of an international multi-centre study , 2006, Epidemiology and Infection.

[55]  D. Sandvang,et al.  Genotypic characterization of Salmonella by multilocus sequence typing, pulsed-field gel electrophoresis and amplified fragment length polymorphism. , 2005, Journal of microbiological methods.

[56]  F. Weill,et al.  Multiple-Antibiotic Resistance in Salmonella enterica Serotype Paratyphi B Isolates Collected in France between 2000 and 2003 Is Due Mainly to Strains Harboring Salmonella Genomic Islands 1, 1-B, and 1-C , 2005, Antimicrobial Agents and Chemotherapy.

[57]  A. Brisabois,et al.  Emergence of Extended-Spectrum-β-Lactamase (CTX-M-9)-Producing Multiresistant Strains of Salmonella enterica Serotype Virchow in Poultry and Humans in France , 2004, Journal of Clinical Microbiology.

[58]  G. Kapperud,et al.  Multiple-locus variable-number tandem-repeats analysis of Salmonella enterica subsp. enterica serovar Typhimurium using PCR multiplexing and multicolor capillary electrophoresis. , 2004, Journal of microbiological methods.

[59]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[60]  Gary Moran,et al.  Comparative genomics using Candida albicans DNA microarrays reveals absence and divergence of virulence-associated genes in Candida dubliniensis. , 2004, Microbiology.

[61]  E. Feil,et al.  Multilocus sequence typing--what is resolved? , 2004, Trends in microbiology.

[62]  P. Fields,et al.  Multiplex PCR for Distinguishing the Most Common Phase-1 Flagellar Antigens of Salmonella spp , 2004, Journal of Clinical Microbiology.

[63]  S. Nair,et al.  Salmonella enterica Serovar Typhi Strains from Which SPI7, a 134-Kilobase Island with Genes for Vi Exopolysaccharide and Other Functions, Has Been Deleted , 2004, Journal of bacteriology.

[64]  R. Parreñas,et al.  Sequencing and Comparative Analysis of Flagellin Genes fliC, fljB, and flpA from Salmonella , 2004, Journal of Clinical Microbiology.

[65]  C. Chiu,et al.  Salmonella enterica Serotype Choleraesuis: Epidemiology, Pathogenesis, Clinical Disease, and Treatment , 2004, Clinical Microbiology Reviews.

[66]  W. Hanage,et al.  eBURST: Inferring Patterns of Evolutionary Descent among Clusters of Related Bacterial Genotypes from Multilocus Sequence Typing Data , 2004, Journal of bacteriology.

[67]  A. Schroeter,et al.  Multiple-Drug Resistance in d-Tartrate-Positive Salmonella enterica Serovar Paratyphi B Isolates from Poultry Is Mediated by Class 2 Integrons Inserted into the Bacterial Chromosome , 2003, Antimicrobial Agents and Chemotherapy.

[68]  W. Rabsch,et al.  Molecular Properties of Salmonella enterica Serotype Paratyphi B Distinguish between Its Systemic and Its Enteric Pathovars , 2003, Journal of Clinical Microbiology.

[69]  B. Malorny,et al.  Discrimination of d-Tartrate-Fermenting and -Nonfermenting Salmonella enterica subsp. enterica Isolates by Genotypic and Phenotypic Methods , 2003, Journal of Clinical Microbiology.

[70]  M. Stephens,et al.  Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. , 2003, Genetics.

[71]  Mark Achtman,et al.  Salmonella typhi, the causative agent of typhoid fever, is approximately 50,000 years old. , 2002, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[72]  B. Guerra,et al.  Molecular Characterization of Multiresistant d-Tartrate-Positive Salmonella enterica Serovar Paratyphi B Isolates , 2002, Journal of Clinical Microbiology.

[73]  W. Rabsch,et al.  Salmonella enterica Serotype Typhimurium and Its Host-Adapted Variants , 2002, Infection and Immunity.

[74]  B. Swaminathan,et al.  PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States. , 2001, Emerging infectious diseases.

[75]  S. Rubino,et al.  Host adapted serotypes of Salmonella enterica , 2000, Epidemiology and Infection.

[76]  R. Kingsley,et al.  Host adaptation and the emergence of infectious disease: the Salmonella paradigm , 2000, Molecular microbiology.

[77]  Mgb,et al.  Test results of Salmonella sero- and phage typing by the National Reference Laboratories and the EnterNet laboratories in the Member States of the European Union , 2000 .

[78]  M Achtman,et al.  Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[79]  M. Hovi,et al.  Application of ribotyping and IS200 fingerprinting to distinguish the five Salmonella serotype O6,7[ratio ]c[ratio ]1,5 groups: Choleraesuis sensu stricto, Choleraesuis var. Kunzendorf, Choleraesuis var. Decatur, Paratyphi C, and Typhisuis , 1999, Epidemiology and Infection.

[80]  P. Grimont,et al.  Restriction Fragment Length Polymorphism Analysis of Some Flagellin Genes of Salmonella enterica , 1998, Journal of Clinical Microbiology.

[81]  T. Ficht,et al.  Evolution of Host Adaptation inSalmonella enterica , 1998, Infection and Immunity.

[82]  M. Achtman,et al.  Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[83]  M Achtman,et al.  A surfeit of YATMs? , 1996, Journal of clinical microbiology.

[84]  E. Boyd,et al.  Salmonella reference collection B (SARB): strains of 37 serovars of subspecies I. , 1993, Journal of general microbiology.

[85]  T. Whittam,et al.  Evolutionary origin and radiation of the avian-adapted non-motile salmonellae. , 1993, Journal of medical microbiology.

[86]  N. Smith,et al.  Molecular evolutionary genetics of the cattle-adapted serovar Salmonella dublin , 1992, Journal of bacteriology.

[87]  J. Musser,et al.  Evolutionary genetic relationships of clones of Salmonella serovars that cause human typhoid and other enteric fevers , 1990, Infection and immunity.

[88]  T. Whittam,et al.  Genetic population structure, clonal phylogeny, and pathogenicity of Salmonella paratyphi B , 1990, Infection and immunity.

[89]  T. Whittam,et al.  Recombination of Salmonella phase 1 flagellin genes generates new serovars , 1990, Journal of bacteriology.

[90]  R. Schneerson,et al.  Characterization of the Salmonella paratyphi C Vi polysaccharide , 1989, Infection and immunity.

[91]  J. Wells,et al.  Toward a population genetic analysis of Salmonella: genetic diversity and relationships among strains of serotypes S. choleraesuis, S. derby, S. dublin, S. enteritidis, S. heidelberg, S. infantis, S. newport, and S. typhimurium. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[92]  V. Monteil,et al.  Étude des Salmonella possédant les facteurs antigéniques 6,7:c:1,5 , 1985 .

[93]  Mark Achtman,et al.  A Phylogenetic Perspective on Molecular Epidemiology , 2002 .

[94]  J. Schwartzman,et al.  Molecular medical microbiology , 2002 .

[95]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[96]  Daniel Falush,et al.  Bacterial Population Genetics in Infectious Disease , 1994 .

[97]  R. Beaud,et al.  [Salmonella possessing the 6,7:c:1,5 antigenic factors]. , 1985, Annales de l'Institut Pasteur. Microbiologie.

[98]  F. Kauffmann Classification of bacteria. A realistic scheme with special reference to the classification of Salmonella- and Escherichia species. , 1975 .

[99]  E. Oye The World Problem of Salmonellosis , 1964, Monographiae Biologicae.

[100]  F. Kauffmann Die Bakteriologie der Salmonella-Species , 1961 .

[101]  F. Kauffmann Das Kauffmann-White-Schema , 1957 .