Digital Color in Cellulose Nanocrystal Films

Cellulose nanocrystals (CNCs) form chiral nematic phases in aqueous suspensions that can be preserved upon evaporation of water. The resulting films show an intense directional coloration determined by their microstructure. Here, microreflection experiments correlated with analysis of the helicoidal nanostructure of the films reveal that the iridescent colors and the ordering of the individual nematic layers are strongly dependent on the polydispersity of the size distribution of the CNCs. We show how this affects the self-assembly process, and hence multidomain color formation in such bioinspired structural films.

[1]  Kristiina Oksman,et al.  Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. , 2005, Biomacromolecules.

[2]  Wadood Y. Hamad,et al.  Parameters Affecting the Chiral Nematic Phase of Nanocrystalline Cellulose Films , 2010 .

[3]  T. Dupont,et al.  Capillary flow as the cause of ring stains from dried liquid drops , 1997, Nature.

[4]  Caroline A. Ross,et al.  Circular Polarization and Nonreciprocal Propagation in Magnetic Media , 2005 .

[5]  D G Gray,et al.  Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. , 1992, International journal of biological macromolecules.

[6]  H. Gleeson,et al.  Accurate modelling of multilayer chiral nematic devices through the Berreman 4 × 4 matrix methods , 2007 .

[7]  L. Onsager THE EFFECTS OF SHAPE ON THE INTERACTION OF COLLOIDAL PARTICLES , 1949 .

[8]  R. Berry,et al.  Controlled production of patterns in iridescent solid films of cellulose nanocrystals , 2013, Cellulose.

[9]  H. Lekkerkerker,et al.  Theory of the isotropic-liquid crystal phase separation for a solution of bidisperse rodlike macromolecules , 1985 .

[10]  D. Gray,et al.  Effect of Counterions on Ordered Phase Formation in Suspensions of Charged Rodlike Cellulose Crystallites , 1997 .

[11]  Peter J. Yunker,et al.  Suppression of the coffee-ring effect by shape-dependent capillary interactions , 2011, Nature.

[12]  H. Vries,et al.  Rotatory Power and Other Optical Properties of Certain Liquid Crystals , 1951 .

[13]  F. Yu,et al.  Coparison of extended jones matrices for twisted nematic liquid crystal displays at oblique angles of incidence , 1999 .

[14]  L. Lucia,et al.  Cellulose nanocrystals: chemistry, self-assembly, and applications. , 2010, Chemical reviews.

[15]  T. Heinze,et al.  General Considerations on Structure and Reactivity of Cellulose: Section 2.1.5–2.1.7.4 , 2004 .

[16]  Jeremy J. Baumberg,et al.  Pointillist structural color in Pollia fruit , 2012, Proceedings of the National Academy of Sciences.

[17]  L. Heux,et al.  Nonflocculating and Chiral-Nematic Self-ordering of Cellulose Microcrystals Suspensions in Nonpolar Solvents , 2000 .

[18]  Mark P. Andrews,et al.  Nanocrystalline cellulose for covert optical encryption , 2012 .

[19]  Mark P. Andrews,et al.  Structured color humidity indicator from reversible pitch tuning in self-assembled nanocrystalline cellulose films , 2013 .

[20]  Stephanie Beck,et al.  Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. , 2011, Biomacromolecules.

[21]  G. Friedel,et al.  Les états mésomorphes de la matière , 1922 .

[22]  Louis Godbout,et al.  Solid self-assembled films of cellulose with chiral nematic order and optically variable properties , 1998 .

[23]  D. Gray,et al.  Effects of Ionic Strength on the Isotropic−Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites , 1996 .

[24]  L. Bergström,et al.  Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films , 2014 .