Digital Color in Cellulose Nanocrystal Films
暂无分享,去创建一个
Jeremy J. Baumberg | Ullrich Steiner | Gen Kamita | Silvia Vignolini | Erwin Reisner | Hanne M. van der Kooij | J. Baumberg | U. Steiner | S. Vignolini | E. Reisner | G. Kamita | A. G. Dumanli | Ahu Gümrah Dumanli
[1] Kristiina Oksman,et al. Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy. , 2005, Biomacromolecules.
[2] Wadood Y. Hamad,et al. Parameters Affecting the Chiral Nematic Phase of Nanocrystalline Cellulose Films , 2010 .
[3] T. Dupont,et al. Capillary flow as the cause of ring stains from dried liquid drops , 1997, Nature.
[4] Caroline A. Ross,et al. Circular Polarization and Nonreciprocal Propagation in Magnetic Media , 2005 .
[5] D G Gray,et al. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. , 1992, International journal of biological macromolecules.
[6] H. Gleeson,et al. Accurate modelling of multilayer chiral nematic devices through the Berreman 4 × 4 matrix methods , 2007 .
[7] L. Onsager. THE EFFECTS OF SHAPE ON THE INTERACTION OF COLLOIDAL PARTICLES , 1949 .
[8] R. Berry,et al. Controlled production of patterns in iridescent solid films of cellulose nanocrystals , 2013, Cellulose.
[9] H. Lekkerkerker,et al. Theory of the isotropic-liquid crystal phase separation for a solution of bidisperse rodlike macromolecules , 1985 .
[10] D. Gray,et al. Effect of Counterions on Ordered Phase Formation in Suspensions of Charged Rodlike Cellulose Crystallites , 1997 .
[11] Peter J. Yunker,et al. Suppression of the coffee-ring effect by shape-dependent capillary interactions , 2011, Nature.
[12] H. Vries,et al. Rotatory Power and Other Optical Properties of Certain Liquid Crystals , 1951 .
[13] F. Yu,et al. Coparison of extended jones matrices for twisted nematic liquid crystal displays at oblique angles of incidence , 1999 .
[14] L. Lucia,et al. Cellulose nanocrystals: chemistry, self-assembly, and applications. , 2010, Chemical reviews.
[15] T. Heinze,et al. General Considerations on Structure and Reactivity of Cellulose: Section 2.1.5–2.1.7.4 , 2004 .
[16] Jeremy J. Baumberg,et al. Pointillist structural color in Pollia fruit , 2012, Proceedings of the National Academy of Sciences.
[17] L. Heux,et al. Nonflocculating and Chiral-Nematic Self-ordering of Cellulose Microcrystals Suspensions in Nonpolar Solvents , 2000 .
[18] Mark P. Andrews,et al. Nanocrystalline cellulose for covert optical encryption , 2012 .
[19] Mark P. Andrews,et al. Structured color humidity indicator from reversible pitch tuning in self-assembled nanocrystalline cellulose films , 2013 .
[20] Stephanie Beck,et al. Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose. , 2011, Biomacromolecules.
[21] G. Friedel,et al. Les états mésomorphes de la matière , 1922 .
[22] Louis Godbout,et al. Solid self-assembled films of cellulose with chiral nematic order and optically variable properties , 1998 .
[23] D. Gray,et al. Effects of Ionic Strength on the Isotropic−Chiral Nematic Phase Transition of Suspensions of Cellulose Crystallites , 1996 .
[24] L. Bergström,et al. Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films , 2014 .