Tuning photoionization mechanisms of molecular hybrid materials for EUV lithography applications

Aromatic structures in organic shell stabilize photoionization products of metal oxo clusters, a new type of materials for EUV lithography.

[1]  Markos Trikeriotis,et al.  Nanoparticle photoresists from HfO2 and ZrO2 for EUV patterning , 2012 .

[2]  U. Schubert,et al.  Retention of the Cluster Core Structure during Ligand Exchange Reactions of Carboxylato-Substituted Metal Oxo Clusters , 2015, European journal of inorganic chemistry.

[3]  Patrick P Naulleau,et al.  Resist Materials for Extreme Ultraviolet Lithography: Toward Low‐Cost Single‐Digit‐Nanometer Patterning , 2015, Advanced materials.

[4]  S. Hsiao,et al.  Electrosynthesis and electrochromic properties of poly(amide-triarylamine)s containing triptycene units , 2015 .

[5]  M. Réfrégiers,et al.  VUV synchrotron radiation: a new activation technique for tandem mass spectrometry. , 2012, Journal of synchrotron radiation.

[6]  Michael Popall,et al.  Ti8O8(OOCR)16, a New Family of Titanium–Oxo Clusters: Potential NBUs for Reticular Chemistry , 2010 .

[7]  Li Li,et al.  Studying the Mechanism of Hybrid Nanoparticle Photoresists: Effect of Particle Size on Photopatterning , 2015 .

[8]  A. Wojtczak,et al.  Synthesis, crystal structures and spectroscopic characterization of [Ti8O8(OOCR)16] (where R = But, CH2But, C(CH3)2Et) , 2005 .

[9]  Patrick Naulleau,et al.  The importance of inner-shell electronic structure for enhancing the EUV absorption of photoresist materials. , 2017, The Journal of chemical physics.

[10]  Amrit K. Narasimhan,et al.  What We Don’t Know About EUV Exposure Mechanisms , 2017 .

[11]  P. Dugourd,et al.  Gas-phase VUV photoionisation and photofragmentation of the silver deuteride nanocluster [Ag10D8L6](2+) (L = bis(diphenylphosphino)methane). A joint experimental and theoretical study. , 2015, Physical chemistry chemical physics : PCCP.

[12]  Karen Petrillo,et al.  The Physics of EUV Photoresist and How It Drives Strategies for Improvement , 2012 .

[13]  Yang Fan,et al.  Phosphonate-Stabilized Titanium-Oxo Clusters with Ferrocene Photosensitizer: Structures, Photophysical and Photoelectrochemical Properties, and DFT/TDDFT Calculations. , 2017, Inorganic chemistry.

[14]  Yi-Lung Yang,et al.  Synthesis, Photophysical, and Electrochromic Characterization of Wholly Aromatic Polyamide Blue-Light-Emitting Materials , 2006 .

[15]  Li Li,et al.  Extreme ultraviolet resist materials for sub-7 nm patterning. , 2017, Chemical Society reviews.

[16]  D. Joyeux,et al.  DESIRS : a state-of-the-art VUV beamline featuring high resolution and variable polarization for spectroscopy and dichroism at SOLEIL , 2012, Journal of synchrotron radiation.

[17]  Spencer J. Williams,et al.  Gas-Phase Structural and Optical Properties of Homo- and Heterobimetallic Rhombic Dodecahedral Nanoclusters [Ag14–nCun(C≡CtBu)12X]+ (X = Cl and Br): Ion Mobility, VUV and UV Spectroscopy, and DFT Calculations , 2017 .

[18]  Laurence Rozes,et al.  Titanium oxo-clusters: precursors for a Lego-like construction of nanostructured hybrid materials. , 2011, Chemical Society reviews.

[19]  Paulette Clancy,et al.  Metal–Organic Framework-Inspired Metal-Containing Clusters for High-Resolution Patterning , 2018, Chemistry of Materials.

[20]  Y. Huang,et al.  Titanium-oxo clusters functionalized with catecholate-type ligands: modulating the optical properties through charge-transfer transitions. , 2018, Dalton transactions.

[21]  U. Schubert Surface chemistry of carboxylato-substituted metal oxo clusters – Model systems for nanoparticles , 2017 .

[22]  Yasin Ekinci,et al.  Absorption coefficient of metal-containing photoresists in the extreme ultraviolet , 2018 .

[23]  U. Schubert Cluster-based inorganic-organic hybrid materials. , 2011, Chemical Society reviews.

[24]  Karlheinz Schwarz,et al.  Ligand dynamics on the surface of zirconium oxo clusters. , 2009, Physical chemistry chemical physics : PCCP.

[25]  C. Ah,et al.  Photofragmentation Dynamics of n-Dodecanethiol-Derivatized Silver Nanoparticles in Cyclohexane , 2000 .