Handling leakage with subsystem codes

Leakage is a particularly damaging error that occurs when a qubit state falls out of its two-level computational subspace. Compared to independent depolarizing noise, leaked qubits may produce many more configurations of harmful correlated errors during error-correction. In this work, we investigate different local codes in the low-error regime of a leakage gate error model. When restricting to bare-ancilla extraction, we observe that subsystem codes are good candidates for handling leakage, as their locality can limit damaging correlated errors. As a case study, we compare subspace surface codes to the subsystem surface codes introduced by Bravyi et al. In contrast to depolarizing noise, subsystem surface codes outperform same-distance subspace surface codes below error rates as high as $\lessapprox 7.5 \times 10^{-4}$ while offering better per-qubit distance protection. Furthermore, we show that at low to intermediate distances, Bacon-Shor codes offer better per-qubit error protection against leakage in an ion-trap motivated error model below error rates as high as $\lessapprox 1.2 \times 10^{-3}$. For restricted leakage models, this advantage can be extended to higher distances by relaxing to unverified two-qubit cat state extraction in the surface code. These results highlight an intrinsic benefit of subsystem code locality to error-corrective performance.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  小谷 正雄 日本物理学会誌及びJournal of the Physical Society of Japanの月刊について , 1955 .

[3]  L. Goddard Information Theory , 1962, Nature.

[4]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[5]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[6]  Hidetoshi Nishimori,et al.  Geometry-Induced Phase Transition in the ±J Ising Model , 1986 .

[7]  Physical Review Letters 63 , 1989 .

[8]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[9]  K. K. Nambiar,et al.  Foundations of Computer Science , 2001, Lecture Notes in Computer Science.

[10]  Andrew Steane,et al.  Active Stabilization, Quantum Computation, and Quantum State Synthesis , 1997 .

[11]  Jens Siewert,et al.  Fidelity and leakage of Josephson qubits , 1999 .

[12]  Klaus Molmer,et al.  Multiparticle Entanglement of Hot Trapped Ions , 1998, quant-ph/9810040.

[13]  A Honecker,et al.  Universality class of the Nishimori point in the 2D +/- J random-bond Ising model. , 2001, Physical review letters.

[14]  D A Lidar,et al.  Efficient universal leakage elimination for physical and encoded qubits. , 2002, Physical review letters.

[15]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[16]  E. Knill Scalable quantum computing in the presence of large detected-error rates , 2003, quant-ph/0312190.

[17]  Carlos Mochon Anyon computers with smaller groups , 2004 .

[18]  Daniel A. Lidar,et al.  Overview of quantum error prevention and leakage elimination , 2004, quant-ph/0402098.

[19]  THE LOSS OF FIDELITY DUE TO QUANTUM LEAKAGE FOR JOSEPHSON CHARGE QUBITS , 2004, quant-ph/0407027.

[20]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[21]  Daniel A. Lidar,et al.  Universal Leakage Elimination , 2004, quant-ph/0409049.

[22]  Jianshe Liu,et al.  Numerical simulation of leakage effect for quantum NOT operation on three-Josephson-junction flux qubit , 2005, cond-mat/0511012.

[23]  F. Schmidt-Kaler,et al.  Quantum computing with trapped ions , 2008, 0809.4368.

[24]  Barbara M. Terhal,et al.  Fault-tolerant quantum computation for local non-Markovian noise , 2005 .

[25]  John Preskill,et al.  Quantum accuracy threshold for concatenated distance-3 codes , 2006, Quantum Inf. Comput..

[26]  Neil Genzlinger A. and Q , 2006 .

[27]  David Poulin,et al.  Operator quantum error correction , 2006, Quantum Inf. Comput..

[28]  D. Bacon Operator quantum error-correcting subsystems for self-correcting quantum memories , 2005, quant-ph/0506023.

[29]  Li Zheng,et al.  Numerical Simulation of Leakage Effect for Quantum NOT Operation on Three-Josephson-Junction Flux Qubit , 2006 .

[30]  Multicritical point of Ising spin glasses on triangular and honeycomb lattices , 2005, cond-mat/0510816.

[31]  Hector Bombin,et al.  Optimal resources for topological two-dimensional stabilizer codes : Comparative study , 2007 .

[32]  Panos Aliferis,et al.  Subsystem fault tolerance with the Bacon-Shor code. , 2007, Physical review letters.

[33]  Barbara M. Terhal,et al.  Fault-tolerant quantum computation for local leakage faults , 2005, Quantum Inf. Comput..

[34]  Panos Aliferis,et al.  Effective fault-tolerant quantum computation with slow measurements. , 2007, Physical review letters.

[35]  Andreas Klappenecker,et al.  Subsystem code constructions , 2007, 2008 IEEE International Symposium on Information Theory.

[36]  Gilles Zémor,et al.  Quantum LDPC Codes With Positive Rate and Minimum Distance Proportional to the Square Root of the Blocklength , 2009, IEEE Transactions on Information Theory.

[37]  Wolfgang Lange,et al.  Quantum Computing with Trapped Ions , 2009, Encyclopedia of Complexity and Systems Science.

[38]  A. Doherty,et al.  Thresholds for topological codes in the presence of loss. , 2009, Physical review letters.

[39]  Austin G. Fowler,et al.  Threshold error rates for the toric and planar codes , 2010, Quantum Inf. Comput..

[40]  David Poulin,et al.  Fast decoders for topological quantum codes. , 2009, Physical review letters.

[41]  Sean D Barrett,et al.  Fault tolerant quantum computation with very high threshold for loss errors. , 2010, Physical review letters.

[42]  H. Bombin,et al.  Topological subsystem codes , 2009, 0908.4246.

[43]  B. Terhal,et al.  Tradeoffs for reliable quantum information storage in 2D systems , 2009, Quantum Cryptography and Computing.

[44]  David Poulin,et al.  Universal topological phase of two-dimensional stabilizer codes , 2011, 1103.4606.

[45]  Martin Suchara,et al.  Constructions and noise threshold of topological subsystem codes , 2010, Journal of Physics A: Mathematical and Theoretical.

[46]  S. Bravyi Subsystem codes with spatially local generators , 2010, 1008.1029.

[47]  R. Ainsworth,et al.  Topological qubit design and leakage , 2011, 1102.5029.

[48]  Dorit Aharonov,et al.  On the Complexity of Commuting Local Hamiltonians, and Tight Conditions for Topological Order in Such Systems , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[49]  K. Brown,et al.  Topological subsystem codes from graphs and hypergraphs , 2012, 1207.0479.

[50]  Austin G. Fowler,et al.  Towards practical classical processing for the surface code. , 2011, Physical review letters.

[51]  John Preskill,et al.  Fault-tolerant quantum computation with asymmetric Bacon-Shor codes , 2012, 1211.1400.

[52]  Keisuke Fujii,et al.  Error and loss tolerances of surface codes with general lattice structures , 2012, 1202.2743.

[53]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[54]  Sergey Bravyi,et al.  Simulation of rare events in quantum error correction , 2013, 1308.6270.

[55]  Austin G. Fowler,et al.  Coping with qubit leakage in topological codes , 2013, 1308.6642.

[56]  David A. Herrera-Mart'i,et al.  Tradeoff between leakage and dephasing errors in the fluxonium qubit , 2012, 1212.4557.

[57]  David G. Cory,et al.  Modeling Quantum Noise for efficient testing of fault-tolerant circuits , 2012, 1206.5407.

[58]  Adam Paetznick,et al.  Universal fault-tolerant quantum computation with only transversal gates and error correction. , 2013, Physical review letters.

[59]  David Poulin,et al.  Subsystem surface codes with three-qubit check operators , 2012, Quantum Inf. Comput..

[60]  Austin G. Fowler,et al.  Understanding the effects of leakage in superconducting quantum-error-detection circuits , 2013, 1306.0925.

[61]  H. Bombin Gauge Color Codes: Optimal Transversal Gates and Gauge Fixing in Topological Stabilizer Codes , 2013, 1311.0879.

[62]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[63]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[64]  Austin G. Fowler,et al.  Quantifying the effects of local many-qubit errors and nonlocal two-qubit errors on the surface code , 2014 .

[65]  Krysta Marie Svore,et al.  Low-distance Surface Codes under Realistic Quantum Noise , 2014, ArXiv.

[66]  P. Macha,et al.  Realization of a binary-outcome projection measurement of a three-level superconducting quantum system , 2015, 1510.08214.

[67]  David P. DiVincenzo,et al.  Fault-tolerant quantum computation for singlet-triplet qubits with leakage errors , 2014, 1412.7010.

[68]  Lian-Ao Wu,et al.  Nonperturbative leakage elimination operators and control of a three-level system. , 2015, Physical review letters.

[69]  Andrew W. Cross,et al.  Leakage suppression in the toric code , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[70]  Austin G. Fowler,et al.  Leakage-resilient approach to fault-tolerant quantum computing with superconducting elements , 2014, 1406.2404.

[71]  N. Linke,et al.  High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits. , 2015, Physical review letters.

[72]  Charles Tahan,et al.  Semiconductor-inspired design principles for superconducting quantum computing , 2015, Nature Communications.

[73]  Isaac H. Kim,et al.  The surface code with a twist , 2016, 1612.04795.

[74]  Daniel A. Lidar,et al.  Error Suppression for Hamiltonian-Based Quantum Computation Using Subsystem Codes. , 2016, Physical review letters.

[75]  Christopher Chamberland,et al.  FLAG FAULT-TOLERANT ERROR CORRECTION WITH ARBITRARY DISTANCE CODES , 2017, 1708.02246.

[76]  Mauricio Gutierrez,et al.  Simulating the performance of a distance-3 surface code in a linear ion trap , 2017, 1710.01378.

[77]  J. Gambetta,et al.  Efficient Z gates for quantum computing , 2016, 1612.00858.

[78]  V. Negnevitsky,et al.  Repeated multi-qubit readout and feedback with a mixed-species trapped-ion register , 2018, Nature.

[79]  Kenneth R. Brown,et al.  Direct measurement of Bacon-Shor code stabilizers , 2018, Physical Review A.

[80]  M. Byrd,et al.  Adiabatic leakage elimination operator in an experimental framework , 2016, Physical Review A.

[81]  Sheng-Tao Wang,et al.  Noise analysis for high-fidelity quantum entangling gates in an anharmonic linear Paul trap , 2018, Physical Review A.

[82]  David Poulin,et al.  A small quantum computer is needed to optimize fault-tolerant protocols , 2017, Quantum Science and Technology.

[83]  Jay M. Gambetta,et al.  Quantification and characterization of leakage errors , 2017, 1704.03081.

[84]  Rui Chao,et al.  Quantum Error Correction with Only Two Extra Qubits. , 2017, Physical review letters.

[85]  Natalie C. Brown,et al.  Comparing Zeeman qubits to hyperfine qubits in the context of the surface code: 171 Yb + and 174 Yb + , 2018, 1803.02545.