Scaling wood volume estimates from inventory plots to landscapes with airborne LiDAR in temperate deciduous forest

BackgroundMonitoring and managing carbon stocks in forested ecosystems requires accurate and repeatable quantification of the spatial distribution of wood volume at landscape to regional scales. Grid-based forest inventory networks have provided valuable records of forest structure and dynamics at individual plot scales, but in isolation they may not represent the carbon dynamics of heterogeneous landscapes encompassing diverse land-management strategies and site conditions. Airborne LiDAR has greatly enhanced forest structural characterisation and, in conjunction with field-based inventories, it provides avenues for monitoring carbon over broader spatial scales. Here we aim to enhance the integration of airborne LiDAR surveying with field-based inventories by exploring the effect of inventory plot size and number on the relationship between field-estimated and LiDAR-predicted wood volume in deciduous broad-leafed forest in central Germany.ResultsEstimation of wood volume from airborne LiDAR was most robust (R2 = 0.92, RMSE = 50.57 m3 ha−1 ~14.13 Mg C ha−1) when trained and tested with 1 ha experimental plot data (n = 50). Predictions based on a more extensive (n = 1100) plot network with considerably smaller (0.05 ha) plots were inferior (R2 = 0.68, RMSE = 101.01 ~28.09 Mg C ha−1). Differences between the 1 and 0.05 ha volume models from LiDAR were negligible however at the scale of individual land-management units. Sample size permutation tests showed that increasing the number of inventory plots above 350 for the 0.05 ha plots returned no improvement in R2 and RMSE variability of the LiDAR-predicted wood volume model.ConclusionsOur results from this study confirm the utility of LiDAR for estimating wood volume in deciduous broad-leafed forest, but highlight the challenges associated with field plot size and number in establishing robust relationships between airborne LiDAR and field derived wood volume. We are moving into a forest management era where field-inventory and airborne LiDAR are inextricably linked, and we encourage field inventory campaigns to strive for increased plot size and give greater attention to precise stem geolocation for better integration with remote sensing strategies.

[1]  G. Asner,et al.  A universal airborne LiDAR approach for tropical forest carbon mapping , 2011, Oecologia.

[2]  S. Popescu Estimating biomass of individual pine trees using airborne lidar , 2007 .

[3]  E. Schulze,et al.  Identification of forest management types from ground-based and remotely sensed variables and the effects of forest management on forest structure and composition , 2011 .

[4]  Sean C. Thomas,et al.  Carbon Content of Tree Tissues: A Synthesis , 2012 .

[5]  Petteri Packalen,et al.  Edge-Tree Correction for Predicting Forest Inventory Attributes Using Area-Based Approach With Airborne Laser Scanning , 2015, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[6]  J. Holmgren Prediction of tree height, basal area and stem volume in forest stands using airborne laser scanning , 2004 .

[7]  Jacob Strunk,et al.  Effects of lidar pulse density and sample size on a model-assisted approach to estimate forest inventory variables , 2012 .

[8]  Roberta E. Martin,et al.  Topo-edaphic controls over woody plant biomass in South African savannas , 2012 .

[9]  R. B. Jackson,et al.  A Large and Persistent Carbon Sink in the World’s Forests , 2011, Science.

[10]  G. Asner,et al.  Evaluating uncertainty in mapping forest carbon with airborne LiDAR , 2011 .

[11]  Liviu Theodor Ene,et al.  Comparative testing of single-tree detection algorithms under different types of forest , 2011 .

[12]  I. Schöning,et al.  Regional organic carbon stock variability: A comparison between depth increments and soil horizons , 2010 .

[13]  G. A. Blackburn,et al.  Mapping individual tree location, height and species in broadleaved deciduous forest using airborne LIDAR and multi‐spectral remotely sensed data , 2005 .

[14]  Randolph H. Wynne,et al.  Fusion of Small-Footprint Lidar and Multispectral Data to Estimate Plot- Level Volume and Biomass in Deciduous and Pine Forests in Virginia, USA , 2004, Forest Science.

[15]  W. Cohen,et al.  Lidar remote sensing of above‐ground biomass in three biomes , 2002 .

[16]  M. Vastaranta,et al.  Status and prospects for LiDAR remote sensing of forested ecosystems , 2013 .

[17]  Sorin C. Popescu,et al.  Terrestrial Laser Scanning as an Effective Tool to Retrieve Tree Level Height, Crown Width, and Stem Diameter , 2015, Remote. Sens..

[18]  R. Dubayah,et al.  Small Sample Sizes Yield Biased Allometric Equations in Temperate Forests , 2015, Scientific Reports.

[19]  C. Schmullius,et al.  Carbon stock and density of northern boreal and temperate forests , 2014 .

[20]  Erik Næsset,et al.  Advances and emerging issues in national forest inventories , 2010 .

[21]  William S. Curran,et al.  A/I: a synthesis , 1982, ACM-SE 20.

[22]  E. Næsset,et al.  Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser , 2008 .

[23]  Gregory P. Asner,et al.  The rate and spatial pattern of treefall in a savanna landscape. , 2013 .

[24]  E. Schulze,et al.  Die Buche. Eine Kultur‐ und Wirtschaftsgeschichte , 2010 .

[25]  C. Millar,et al.  Temperate forest health in an era of emerging megadisturbance , 2015, Science.

[26]  G. Ståhl,et al.  National Forest Inventories: Prospects for Harmonised International Reporting , 2010 .

[27]  E. Næsset Estimating timber volume of forest stands using airborne laser scanner data , 1997 .

[28]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[29]  Christian Wirth,et al.  Generic biomass functions for Norway spruce in Central Europe--a meta-analysis approach toward prediction and uncertainty estimation. , 2004, Tree physiology.

[30]  Heinrich Spiecker,et al.  SimpleTree —An Efficient Open Source Tool to Build Tree Models from TLS Clouds , 2015 .

[31]  C. Wirth,et al.  Generic biomass functions for Common beech (Fagus sylvatica) in Central Europe: predictions and components of uncertainty , 2008 .

[32]  Jörg M. Hacker,et al.  Monitoring the Distribution and Dynamics of an Invasive Grass in Tropical Savanna Using Airborne LiDAR , 2015, Remote. Sens..

[33]  K. Itten,et al.  LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management , 2004 .

[34]  E. Schulze,et al.  Der Einfluss politischer, rechtlicher und wirtschaftlicher Rahmenbedingungen des 19. Jahrhunderts auf die Bewirtschaftung der Wälder im Hainich-Dün-Gebiet (Nordthüringen) , 2011 .

[35]  Jens Nieschulze,et al.  Implementing large-scale and long-term functional biodiversity research: The Biodiversity Exploratories , 2010 .

[36]  Die Buche Eine Kultur- und Wirtschaftsgeschichte , 2010 .

[37]  B. Koch,et al.  Detection of individual tree crowns in airborne lidar data , 2006 .

[38]  Iurii Shendryk,et al.  Bottom-up delineation of individual trees from full-waveform airborne laser scans in a structurally complex eucalypt forest , 2016 .

[39]  Scott J. Goetz,et al.  The Global Ecosystem Dynamics Investigation , 2014 .

[40]  Q. Guo,et al.  A bottom-up approach to segment individual deciduous trees using leaf-off lidar point cloud data , 2014 .

[41]  Andrew O Finley,et al.  Integrating forest inventory and analysis data into a LIDAR-based carbon monitoring system , 2014, Carbon Balance and Management.

[42]  M. Herold,et al.  Nondestructive estimates of above‐ground biomass using terrestrial laser scanning , 2015 .

[43]  E. Næsset Practical large-scale forest stand inventory using a small-footprint airborne scanning laser , 2004 .

[44]  Christian Wirth,et al.  Evaluating tree carbon predictions for beech (Fagus sylvatica L.) in western Germany , 2004 .