Modeling and inference of multisubject fMRI data

This article reviews four commonly used approaches to group modeling in fMRI. The methods differ in their computational intensity (FSL with its two-level estimation including MCM being the most intense) and assumptions (SPM2 with its assumption of spatially homogeneous covariance V/sub g/ being most restrictive). This study also distinguishes fixed-effects models from mixed-effects models and motivates the importance of a mixed-effects model for group fMRI analysis. The sections following that describe single-subject modeling and show a general method for estimating the group model.

[1]  Stephen M. Smith,et al.  Temporal Autocorrelation in Univariate Linear Modeling of FMRI Data , 2001, NeuroImage.

[2]  Michael I. Miller,et al.  Deformable templates using large deformation kinematics , 1996, IEEE Trans. Image Process..

[3]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[4]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[5]  Scott T. Grafton,et al.  Automated image registration: I. General methods and intrasubject, intramodality validation. , 1998, Journal of computer assisted tomography.

[6]  Alan C. Evans,et al.  A general statistical analysis for fMRI data , 2000, NeuroImage.

[7]  Stephen M. Smith,et al.  Functional MRI : an introduction to methods , 2002 .

[8]  Franklin A. Graybill,et al.  Theory and Application of the Linear Model , 1976 .

[9]  Stephen M. Smith,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[10]  P. Matthews,et al.  The role of ipsilateral premotor cortex in hand movement after stroke , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Paul M. Thompson,et al.  A surface-based technique for warping three-dimensional images of the brain , 1996, IEEE Trans. Medical Imaging.

[12]  J C Mazziotta,et al.  Automated image registration: II. Intersubject validation of linear and nonlinear models. , 1998, Journal of computer assisted tomography.

[13]  A. Holmes Generalisability, random effects and population inference (abstract) , 1998 .

[14]  Stephen M. Smith,et al.  General multilevel linear modeling for group analysis in FMRI , 2003, NeuroImage.

[15]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[16]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Theory , 2002, NeuroImage.

[17]  B. Ripley,et al.  A new statistical approach to detecting significant activation in functional MRI , 2000, NeuroImage.

[18]  G. Molenberghs,et al.  Linear Mixed Models for Longitudinal Data , 2001 .

[19]  Keith J. Worsley,et al.  Spatial smoothing of autocorrelations to control the degrees of freedom in fMRI analysis , 2005, NeuroImage.

[20]  Marc M. Van Hulle,et al.  Optimal spatial regularisation of autocorrelation estimates in fMRI analysis , 2004, NeuroImage.

[21]  Stephen M. Smith,et al.  On Bias in the Estimation of Autocorrelations for fMRI Voxel Time-Series Analysis , 2003, NeuroImage.

[22]  M J Brammer,et al.  The analysis of functional magnetic resonance images , 1997, Statistical methods in medical research.

[23]  R. Weisskoff,et al.  Effect of temporal autocorrelation due to physiological noise and stimulus paradigm on voxel‐level false‐positive rates in fMRI , 1998, Human brain mapping.

[24]  E Zarahn,et al.  Empirical analyses of BOLD fMRI statistics. II. Spatially smoothed data collected under null-hypothesis and experimental conditions. , 1997, NeuroImage.

[25]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Applications , 2002, NeuroImage.

[26]  J. Ashburner,et al.  Nonlinear spatial normalization using basis functions , 1999, Human brain mapping.

[27]  Karl J. Friston,et al.  Human Brain Function , 1997 .

[28]  R. Turner,et al.  Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[29]  A. Toga,et al.  A SURFACE-BASED TECHNIQUE FOR WARPING 3-DIMENSIONAL IMAGES OF THE BRAIN , 2000 .

[30]  M. D’Esposito,et al.  Empirical analyses of BOLD fMRI statistics. I. Spatially unsmoothed data collected under null-hypothesis conditions. , 1997, NeuroImage.