NON-AXISYMMETRIC FLOWS ON HOT JUPITERS WITH OBLIQUE MAGNETIC FIELDS

Giant planets that reside in close proximity to their host stars are subject to extreme irradiation, which gives rise to thermal ionization of trace Alkali metals in their atmospheres. On objects where the atmospheric electrical conductivity is substantial, the global circulation couples to the background magnetic field, inducing supplementary fields and altering the nature of the flow. To date, a number of authors have considered the influence of a spin-pole aligned dipole magnetic field on the dynamical state of a weakly-ionized atmosphere and found that magnetic breaking may lead to significantly slower winds than predicted within a purely hydrodynamical framework. Here, we consider the effect of a tilted dipole magnetic field on the circulation and demonstrate that in addition to regulating wind velocities, an oblique field generates stationary non-axisymmetric structures that adhere to the geometry of the magnetic pole. Using a kinematic perturbative approach, we derive a closed-form solution for the perturbed circulation and show that the fractional distortion of zonal jets scales as the product of the field obliquity and the Elsasser number. The results obtained herein suggest that on planets with oblique magnetic fields, advective shifts of dayside hotspots may have substantial latitudinal components. This prediction may be tested observationally using the eclipse mapping technique.

[1]  K. Menou MAGNETIC SCALING LAWS FOR THE ATMOSPHERES OF HOT GIANT EXOPLANETS , 2011, 1108.3592.

[2]  L. Polvani,et al.  EQUATORIAL SUPERROTATION ON TIDALLY LOCKED EXOPLANETS , 2011, 1103.3101.

[3]  S. Seager,et al.  Atmospheric Circulation of Close-In Extrasolar Giant Planets. I. Global, Barotropic, Adiabatic Simulations , 2006, astro-ph/0607338.

[4]  Nicolas B. Cowan,et al.  A MODEL FOR THERMAL PHASE VARIATIONS OF CIRCULAR AND ECCENTRIC EXOPLANETS , 2010, 1011.0428.

[5]  Konstantin Batygin,et al.  INFLATING HOT JUPITERS WITH OHMIC DISSIPATION , 2010, 1002.3650.

[6]  David Charbonneau,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: COUPLED RADIATIVE-DYNAMICAL GENERAL CIRCULATION MODEL SIMULATIONS OF HD 189733b and HD 209458b , 2008, 0809.2089.

[7]  Tristan Guillot,et al.  Atmospheric circulation and tides of ``51 Pegasus b-like'' planets , 2002 .

[8]  G. Laughlin,et al.  Hydrodynamic Simulations of Unevenly Irradiated Jovian Planets , 2007, 0711.2106.

[9]  K. Menou,et al.  RADIATION HYDRODYNAMICS OF HOT JUPITER ATMOSPHERES , 2009, 0910.1346.

[10]  D. Charbonneau,et al.  Hot nights on extrasolar planets: mid‐infrared phase variations of hot Jupiters , 2007, 0705.1189.

[11]  K. Menou,et al.  A GENERAL CIRCULATION MODEL FOR GASEOUS EXOPLANETS WITH DOUBLE-GRAY RADIATIVE TRANSFER , 2011, 1112.1658.

[12]  J. Peixoto,et al.  Physics of climate , 1992 .

[13]  M. Marley,et al.  Erratum: “Atmospheric Circulation of Hot Jupiters: Three-dimensional Circulation Models of HD 209458b and HD 189733b with Simplified Forcing” (ApJ, 682, 559 [2008]) , 2008 .

[14]  I. Dobbs-Dixon,et al.  Atmospheric Dynamics of Short-Period Extrasolar Gas Giant Planets. I. Dependence of Nightside Temperature on Opacity , 2007, 0704.3269.

[15]  Curtis S. Cooper,et al.  Dynamic Meteorology at the Photosphere of HD 209458b , 2005, astro-ph/0502476.

[16]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[17]  K. Menou,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: A SHALLOW THREE-DIMENSIONAL MODEL , 2008, 0809.1671.

[18]  Ch. Helling,et al.  EARLY UV INGRESS IN WASP-12b: MEASURING PLANETARY MAGNETIC FIELDS , 2010, 1009.5947.

[19]  Kristen Menou,et al.  MAGNETIC DRAG ON HOT JUPITER ATMOSPHERIC WINDS , 2010, 1003.3838.

[20]  Kevin Heng,et al.  Atmospheric circulation of tidally locked exoplanets: a suite of benchmark tests for dynamical solvers , 2010, 1010.1257.

[21]  A. Showman,et al.  MAGNETOHYDRODYNAMIC SIMULATIONS OF THE ATMOSPHERE OF HD 209458b , 2014, 1401.5815.

[22]  Konstantin Batygin,et al.  EVOLUTION OF OHMICALLY HEATED HOT JUPITERS , 2011, 1101.3800.

[23]  D. Stevenson Planetary magnetic fields , 2003 .

[24]  Department of Physics,et al.  Towards consistent mapping of distant worlds: secondary-eclipse scanning of the exoplanet HD 189733b , 2012, 1202.3829.

[25]  K. Heng,et al.  ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. I. ATMOSPHERIC DYNAMICS VIA THE SHALLOW WATER SYSTEM , 2014, 1401.7571.

[26]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[28]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[29]  K. Menou,et al.  THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION MODELS OF HD 189733b AND HD 209458b WITH CONSISTENT MAGNETIC DRAG AND OHMIC DISSIPATION , 2012, 1208.2274.

[30]  H. K. Moffatt Magnetic Field Generation in Electrically Conducting Fluids , 1978 .

[31]  E. Agol,et al.  THE STATISTICS OF ALBEDO AND HEAT RECIRCULATION ON HOT EXOPLANETS , 2009, 1001.0012.

[32]  Eric Agol,et al.  Three-dimensional radiative-hydrodynamical simulations of the highly irradiated short-period exoplanet HD 189733b , 2012, 1211.1709.

[33]  Nicolas B. Cowan,et al.  Inverting Phase Functions to Map Exoplanets , 2008, 0803.3622.

[34]  David Charbonneau,et al.  A map of the day–night contrast of the extrasolar planet HD 189733b , 2007, Nature.

[35]  David Charbonneau,et al.  THE 8 μm PHASE VARIATION OF THE HOT SATURN HD 149026b , 2009, 0908.1977.

[36]  J. Holton An introduction to dynamic meteorology , 2004 .

[37]  D. Stevenson,et al.  Constraints on Deep-seated Zonal Winds Inside Jupiter and Saturn , 2007, 0711.3922.

[38]  Sara Seager,et al.  The Changing Face of the Extrasolar Giant Planet HD 209458b , 2002, astro-ph/0209227.

[39]  E. Agol,et al.  A TWO-DIMENSIONAL INFRARED MAP OF THE EXTRASOLAR PLANET HD 189733b , 2012, 1202.1883.

[40]  M. Marley,et al.  ATMOSPHERIC CIRCULATION OF ECCENTRIC HOT NEPTUNE GJ436b , 2010, 1007.2942.

[41]  G. Laughlin,et al.  Observational Consequences of Hydrodynamic Flows on Hot Jupiters , 2007, astro-ph/0702700.

[42]  T. Brown,et al.  Detection of Planetary Transits Across a Sun-like Star , 1999, The Astrophysical journal.

[43]  K. Heng THE INFLUENCE OF ATMOSPHERIC SCATTERING AND ABSORPTION ON OHMIC DISSIPATION IN HOT JUPITERS , 2012, 1202.3345.

[44]  Ch. Helling,et al.  Prospects for detection of exoplanet magnetic fields through bow‐shock observations during transits , 2010, 1011.3455.

[45]  U. Christensen,et al.  Energy flux determines magnetic field strength of planets and stars , 2009, Nature.

[46]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .