Interval Type-2 Recursive Fuzzy C-Means Clustering Algorithm in the TS Fuzzy Model Identification

This paper presents an iterative Takagi Sugeno Fuzzy Model (TSFM) identification. Interval Type-2 Recursive Fuzzy C-Means (IT2RFCM) clustering algorithm has been used to classify the data space to obtain premise variable parameters and Weighted Recursive Least Square (WRLS) technique has been used to determine consequence parameters of each linear model. IT2RFCM clustering algorithm has been obtained from type-1 Fuzzy C-Means clustering algorithm by introducing fuzziness parameters. The effectiveness of the proposed IT2RFCM algorithm has been validated on Mackey-Glass time series data.

[1]  Edwin Lughofer,et al.  FLEXFIS: A Robust Incremental Learning Approach for Evolving Takagi–Sugeno Fuzzy Models , 2008, IEEE Transactions on Fuzzy Systems.

[2]  Madasu Hanmandlu,et al.  Structure identification of generalized adaptive neuro-fuzzy inference systems , 2003, IEEE Trans. Fuzzy Syst..

[3]  Emil Levi,et al.  Identification of complex systems based on neural and Takagi-Sugeno fuzzy model , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[4]  Jerry M. Mendel,et al.  Type-2 fuzzy sets and systems: an overview , 2007, IEEE Computational Intelligence Magazine.

[5]  Fernando A. C. Gomide,et al.  Recursive possibilistic fuzzy modeling , 2014, 2014 IEEE Symposium on Evolving and Autonomous Learning Systems (EALS).

[6]  Alok Kanti Deb,et al.  TS fuzzy model identification by a novel objective function based fuzzy clustering algorithm , 2014, 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL).

[7]  N. N. Karnik,et al.  Introduction to type-2 fuzzy logic systems , 1998, 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36228).

[8]  Jerry M. Mendel,et al.  Operations on type-2 fuzzy sets , 2001, Fuzzy Sets Syst..

[9]  Oscar Castillo,et al.  Interval type-2 fuzzy clustering for membership function generation , 2013, 2013 IEEE Workshop on Hybrid Intelligent Models and Applications (HIMA).

[10]  Nikola K. Kasabov,et al.  DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction , 2002, IEEE Trans. Fuzzy Syst..

[11]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[12]  Okyay Kaynak,et al.  Interval Type-2 Fuzzy Neural System Based Control with Recursive Fuzzy C-Means Clustering , 2014 .

[13]  Byung-In Choi,et al.  Interval type-2 fuzzy membership function generation methods for pattern recognition , 2009, Inf. Sci..

[14]  Fernando A. C. Gomide,et al.  Enhanced evolving participatory learning fuzzy modeling: an application for asset returns volatility forecasting , 2014, Evol. Syst..

[15]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[16]  Chih-Hong Lin,et al.  Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive , 2001, IEEE Trans. Fuzzy Syst..

[17]  D.P. Filev,et al.  An approach to online identification of Takagi-Sugeno fuzzy models , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[18]  Plamen Angelov,et al.  Evolving Intelligent Systems: Methodology and Applications , 2010 .

[19]  J. Bezdek,et al.  FCM: The fuzzy c-means clustering algorithm , 1984 .

[20]  Plamen Angelov,et al.  Evolving Fuzzy Modeling Using Participatory Learning , 2010 .

[21]  Stephen L. Chiu,et al.  Fuzzy Model Identification Based on Cluster Estimation , 1994, J. Intell. Fuzzy Syst..

[22]  N. Sundararajan,et al.  Extended sequential adaptive fuzzy inference system for classification problems , 2011, Evol. Syst..

[23]  Sundaram Suresh,et al.  A meta-cognitive sequential learning algorithm for neuro-fuzzy inference system , 2012, Appl. Soft Comput..

[24]  Junfei Qiao,et al.  A self-organizing fuzzy neural network and its applications to function approximation and forecast modeling , 2008, Neurocomputing.

[25]  Sundaram Suresh,et al.  A meta-cognitive interval type-2 fuzzy inference system and its projection based learning algorithm , 2014, Evol. Syst..

[26]  Igor Skrjanc,et al.  Recursive fuzzy c-means clustering for recursive fuzzy identification of time-varying processes. , 2011, ISA transactions.