Biochemical and structural characterization of Cryptosporidium parvum Lactate dehydrogenase.

[1]  D. Theobald,et al.  An atomic-resolution view of neofunctionalization in the evolution of apicomplexan lactate dehydrogenases , 2014, eLife.

[2]  S. Harper,et al.  Structural characterization of the apo form and NADH binary complex of human lactate dehydrogenase , 2014, Acta crystallographica. Section D, Biological crystallography.

[3]  M. Santín,et al.  Clinical and subclinical infections with Cryptosporidium in animals , 2013, New Zealand veterinary journal.

[4]  W. Cook,et al.  Crystal Structure of Cryptosporidium parvum Pyruvate Kinase , 2012, PloS one.

[5]  Karen L. Kotloff,et al.  Burden of disease from cryptosporidiosis , 2012, Current opinion in infectious diseases.

[6]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[7]  N. Pannu,et al.  REFMAC5 for the refinement of macromolecular crystal structures , 2011, Acta crystallographica. Section D, Biological crystallography.

[8]  Qing He,et al.  Cryptosporidiosis-an overview , 2011, Journal of biomedical research.

[9]  Rodrigo Lopez,et al.  A new bioinformatics analysis tools framework at EMBL–EBI , 2010, Nucleic Acids Res..

[10]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[11]  W. Cook,et al.  An unexpected phosphate binding site in Glyceraldehyde 3-Phosphate Dehydrogenase: Crystal structures of apo, holo and ternary complex of Cryptosporidium parvum enzyme , 2009, BMC Structural Biology.

[12]  Vincent B. Chen,et al.  MolProbity: all-atom contacts and structure validation for proteins and nucleic acids , 2007, Nucleic Acids Res..

[13]  N. Kaplan,et al.  Lactate dehydrogenases: structure and function. , 2006, Advances in enzymology and related areas of molecular biology.

[14]  R. L. Brady,et al.  Structure of lactate dehydrogenase from Plasmodium vivax: complexes with NADH and APADH. , 2005, Biochemistry.

[15]  S. Croft,et al.  Mapping the binding site for gossypol-like inhibitors of Plasmodium falciparum lactate dehydrogenase. , 2005, Molecular and biochemical parasitology.

[16]  D. Chattopadhyay,et al.  Crystallization of three key glycolytic enzymes of the opportunistic pathogen Cryptosporidium parvum. , 2005, Biochimica et biophysica acta.

[17]  Ping Xu,et al.  Complete Genome Sequence of the Apicomplexan, Cryptosporidium parvum , 2004, Science.

[18]  K. Kavanagh,et al.  Structure of Toxoplasma gondii LDH1: active-site differences from human lactate dehydrogenases and the structural basis for efficient APAD+ use. , 2004, Biochemistry.

[19]  D. Madern,et al.  Evolution of Cryptosporidium parvum lactate dehydrogenase from malate dehydrogenase by a very recent event of gene duplication. , 2003, Molecular biology and evolution.

[20]  V. J. Winter,et al.  Crystal structure of Plasmodium berghei lactate dehydrogenase indicates the unique structural differences of these enzymes are shared across the Plasmodium genus. , 2003, Molecular and biochemical parasitology.

[21]  J. Keithly,et al.  α-Proteobacterial Relationship of Apicomplexan Lactate and Malate Dehydrogenases , 2002, The Journal of eukaryotic microbiology.

[22]  S. Parmley,et al.  The kinetic properties and sensitivities to inhibitors of lactate dehydrogenases (LDH1 and LDH2) from Toxoplasma gondii: comparisons with pLDH from Plasmodium falciparum. , 2001, Molecular and biochemical parasitology.

[23]  I. Kuntz,et al.  Adenosine analogues as selective inhibitors of glyceraldehyde-3-phosphate dehydrogenase of Trypanosomatidae via structure-based drug design. , 2001, Journal of medicinal chemistry.

[24]  G. H. Coombs Biochemical peculiarities and drug targets in Cryptosporidium parvum: lessons from other coccidian parasites. , 1999, Parasitology today.

[25]  Patrice Gouet,et al.  ESPript: analysis of multiple sequence alignments in PostScript , 1999, Bioinform..

[26]  R. Piper,et al.  Selective inhibitors of human lactate dehydrogenases and lactate dehydrogenase from the malarial parasite Plasmodium falciparum. , 1998, Journal of medicinal chemistry.

[27]  R. Piper,et al.  Substrate and cofactor specificity and selective inhibition of lactate dehydrogenase from the malarial parasite P. falciparum. , 1997, Molecular and biochemical parasitology.

[28]  A. Clarke,et al.  A model of Plasmodium falciparum lactate dehydrogenase and its implications for the design of improved antimalarials and the enhanced detection of parasitaemia. , 1997, Protein engineering.

[29]  C. Dunn,et al.  The structure of lactate dehydrogenase from Plasmodium falciparum reveals a new target for anti-malarial design , 1996, Nature Structural Biology.

[30]  C. Roberts,et al.  Comparison of the phosphofructokinase and pyruvate kinase activities of Cryptosporidium parvum, Eimeria tenella and Toxoplasma gondii. , 1996, Molecular and biochemical parasitology.

[31]  J. Le bras,et al.  Plasmodium falciparum and Plasmodium vivax: lactate dehydrogenase activity and its application for in vitro drug susceptibility assay. , 1995, Experimental parasitology.

[32]  B. A. Fox,et al.  Expression of Plasmodium falciparum lactate dehydrogenase in Escherichia coli. , 1993, Molecular and biochemical parasitology.

[33]  M. Makler,et al.  Measurement of the lactate dehydrogenase activity of Plasmodium falciparum as an assessment of parasitemia. , 1993, The American journal of tropical medicine and hygiene.

[34]  R. Huber,et al.  Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement , 1991 .

[35]  H. Muirhead,et al.  A specific, highly active malate dehydrogenase by redesign of a lactate dehydrogenase framework. , 1988, Science.

[36]  K. Hart,et al.  The use of genetically engineered tryptophan to identify the movement of a domain of B. stearothermophilus lactate dehydrogenase with the process which limits the steady-state turnover of the enzyme. , 1988, Biochemical and biophysical research communications.

[37]  D. V. Vander Jagt,et al.  Biologically active derivatives of gossypol: synthesis and antimalarial activities of peri-acylated gossylic nitriles. , 1986, Journal of medicinal chemistry.

[38]  W. A. Toscano,et al.  Kinetics of gossypol inhibition of bovine lactate dehydrogenase X. , 1983, Biochemical and biophysical research communications.

[39]  C. S. Wang Inhibition of human erythrocyte lactate dehydrogenase by high concentrations of pyruvate. Evidence for the competitive substrate inhibition. , 1977, European journal of biochemistry.

[40]  M G Rossmann,et al.  Structural adaptations of lactate dehydrogenase isozymes. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Kaplan No,et al.  LACTATE DEHYDROGENASE--STRUCTURE AND FUNCTION. , 1964 .

[42]  Gregory A. Buck,et al.  parvum Cryptosporidium Complete Genome Sequence of the Apicomplexan , , 2012 .

[43]  Alexey Bochkarev,et al.  Genome-scale protein expression and structural biology of Plasmodium falciparum and related Apicomplexan organisms. , 2007, Molecular and biochemical parasitology.

[44]  W. Delano The PyMOL Molecular Graphics System (2002) , 2002 .

[45]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[46]  V. J. Winter,et al.  Structural basis for altered activity of M- and H-isozyme forms of human lactate dehydrogenase. , 2001, Proteins.

[47]  A. Hernandez,et al.  An EXCEL template for calculation of enzyme kinetic parameters by non-linear regression , 1998, Bioinform..

[48]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[49]  P. Klenerman,et al.  Plasma lactate dehydrogenase estimation in the diagnosis of malaria. , 1992, Annals of tropical medicine and parasitology.

[50]  C. Wang Parasite enzymes as potential targets for antiparasitic chemotherapy. , 1984, Journal of medicinal chemistry.

[51]  N. Kaplan LACTATE DEHYDROGENASE--STRUCTURE AND FUNCTION. , 1964, Brookhaven symposia in biology.