Monodromy in Hamiltonian Floer theory
暂无分享,去创建一个
[1] Hsin-Hong Lai. Gromov–Witten invariants of blow-ups along submanifolds with convex normal bundles , 2007, 0710.3968.
[2] L. Polterovich,et al. Rigid subsets of symplectic manifolds , 2007, Compositio Mathematica.
[3] Michael Usher. Spectral numbers in Floer theories , 2007, Compositio Mathematica.
[4] Tian-Jun Li,et al. Birational cobordism invariance of uniruled symplectic manifolds , 2006, math/0611592.
[5] L. Polterovich,et al. C^0-rigidity of Poisson brackets , 2007, 0712.2913.
[6] D. Mcduff. Loops in the Hamiltonian group: a survey , 2007, 0711.4086.
[7] D. Burago,et al. Conjugation-invariant norms on groups of geometric origin , 2007, 0710.1412.
[8] D. Mcduff. HAMILTONIAN S 1 -MANIFOLDS ARE UNIRULED , 2007, 0706.0675.
[9] L. Polterovich,et al. Symplectic quasi-states and semi-simplicity of quantum homology , 2007, 0705.3735.
[10] D. Mcduff. The symplectomorphism group of a blow up , 2006, math/0610142.
[11] Y. Ostrover. Calabi quasi-morphisms for some non-monotone symplectic manifolds , 2005, math/0508090.
[12] Peter Albers. On the extrinsic topology of Lagrangian submanifolds , 2005, math/0506016.
[13] L. Polterovich,et al. Quasi-states and symplectic intersections , 2004, math/0410338.
[14] O. Yong-Geun. Floer mini-max theory, the Cerf diagram, and the spectral invariants , 2004, math/0406449.
[15] Y. Oh. Spectral invariants, analysis of the Floer moduli spaces and geometry of the Hamiltonian diffeomorphism group , 2004, math/0403083.
[16] Dusa McDuff,et al. J-Holomorphic Curves and Symplectic Topology , 2004 .
[17] J. Kędra. Evaluation fibrations and topology of symplectomorphisms , 2003, math/0305325.
[18] Y. Ostrover. A COMPARISON OF HOFER'S METRICS ON HAMILTONIAN DIFFEOMORPHISMS AND LAGRANGIAN SUBMANIFOLDS , 2002, math/0207070.
[19] L. Polterovich,et al. Calabi quasimorphism and quantum homology , 2002, math/0205247.
[20] R. Pandharipande,et al. A reconstruction theorem in quantum cohomology and quantum K-theory , 2001, math/0104084.
[21] D. Mcduff. Geometric variants of the Hofer norm , 2001, math/0103089.
[22] D. Mcduff. Geometric Invariants of the Hofer Norm , 2001 .
[23] M. Schwarz. On the action spectrum for closed symplectically aspherical manifolds Pacific J , 2000 .
[24] D. Mcduff. Quantum Homology of fibrations over $S^2$ , 1999, math/9905092.
[25] Jianxun Hu. Gromov-Witten invariants of blow-ups along points and curves , 1998, math/9810081.
[26] L. Polterovich. Hofer's diameter and Lagrangian intersections , 1998, math/9801054.
[27] D. Mcduff,et al. The geometry of symplectic energy , 1993, math/9306216.
[28] H. Hofer. On the topological properties of symplectic maps , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.