A local decision test for sparse polynomials

An @?-sparse (multivariate) polynomial is a polynomial containing at most @?-monomials in its explicit description. We assume that a polynomial is implicitly represented as a black-box: on an input query from the domain, the black-box replies with the evaluation of the polynomial at that input. We provide an efficient, randomized algorithm, that can decide whether a polynomial f:F"q^n->F"q given as a black-box is @?-sparse or not, provided that q is large compared to the polynomial's total degree. The algorithm makes only O(@?) queries, which is independent of the domain size. The running time of our algorithm (in the bit-complexity model) is poly(n,logd,@?), where d is an upper bound on the degree of each variable. Existing interpolation algorithms for polynomials in the same model run in time poly(n,d,@?). We provide a similar test for polynomials with integer coefficients.

[1]  Li Gyun-y A new algorithm for the inversion of Hankel and Toeplitz matrices , 1984 .

[2]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[3]  Erich Kaltofen,et al.  Improved Sparse Multivariate Polynomial Interpolation Algorithms , 1988, ISSAC.

[4]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[5]  Rocco A. Servedio,et al.  Efficiently Testing Sparse GF(2) Polynomials , 2010, Algorithmica.

[6]  Noga Alon,et al.  epsilon-Discrepancy Sets and Their Application for Interpolation of Sparse Polynomials , 1995, Inf. Process. Lett..

[7]  Rocco A. Servedio,et al.  Testing for Concise Representations , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[8]  Dana Ron,et al.  Property Testing , 2000 .

[9]  Eric Blais Testing juntas nearly optimally , 2009, STOC '09.

[10]  Marek Karpinski,et al.  Interpolation of sparse rational functions without knowing bounds on exponents , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[11]  Oded Goldreich,et al.  Combinatorial property testing (a survey) , 1997, Randomization Methods in Algorithm Design.

[12]  Marek Karpinski,et al.  A Zero-Test and an Interpolation Algorithm for the Shifted Sparse Polynominals , 1993, AAECC.

[13]  B. David Saunders,et al.  Sparse Polynomial Interpolation in Nonstandard Bases , 1995, SIAM J. Comput..

[14]  E. Fischer THE ART OF UNINFORMED DECISIONS: A PRIMER TO PROPERTY TESTING , 2004 .

[15]  Yishay Mansour,et al.  Randomized Interpolation and Approximation of Sparse Polynomials , 1992, SIAM J. Comput..

[16]  Dima Grigoriev,et al.  Algorithms for Computing Sparse Shifts for Multivariate Polynomials , 1995, ISSAC.

[17]  Dana Ron Property Testing: A Learning Theory Perspective , 2008, Found. Trends Mach. Learn..

[18]  Éric Schost,et al.  Interpolation of polynomials given by straight-line programs , 2009, Theor. Comput. Sci..

[19]  Marek Karpinski,et al.  On Zero-Testing and Interpolation of k-Sparse Multivariate Polynomials Over Finite Fields , 1991, Theor. Comput. Sci..

[20]  Marek Karpinski,et al.  Fast Parallel Algorithms for Sparse Multivariate Polynomial Interpolation over Finite Fields , 1988, SIAM J. Comput..

[21]  Michael Ben-Or,et al.  A deterministic algorithm for sparse multivariate polynomial interpolation , 1988, STOC '88.

[22]  Guy Kindler,et al.  Testing juntas , 2002, J. Comput. Syst. Sci..