Exploitation of Sparsity for Hyperspectral Target Detection. (Exploitation de la parcimonie pour la détection de cibles dans les images hyperspectrales)

Le titre de cette these de doctorat est forme de trois mots cles: parcimonie, image hyperspectrale, et detection de cibles. La parcimonie signifie generalement « petit en nombre ou quantite, souvent repartie sur une grande zone ». Une image hyperspectrale est constituee d'une serie d'images de la meme scene spatiale, mais prises dans plusieurs dizaines de longueurs d'onde contigues et tres etroites, qui correspondent a autant de "couleurs". Lorsque la dimension spectrale est tres grande, la detection de cibles devient delicate et caracterise une des applications les plus importantes pour les images hyperspectrales. Le but principal de cette these de doctorat est de repondre a la question « Comment et Pourquoi la parcimonie peut-elle etre exploitee pour detecter de cibles dans les images hyperspectrales ? ». La reponse a cette question nous a permis de developper des methodes de detection de cibles prenant en compte l'heterogeneite de l'environnement, le fait que les objets d'interet sont situes dans des parties relativement reduites de l'image observee et enfin que l'estimation de la matrice de covariance d'un pixel d'une image hyperspectrale peut etre compliquee car cette matrice appartient a un espace de grande dimension. Les methodes proposees sont evaluees sur des donnees synthetiques ainsi que reelles, dont les resultats demontrent leur efficacite pour la detection de cibles dans les images hyperspectrales.

[1]  Bea Thai,et al.  Invariant subpixel material detection in hyperspectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..

[2]  Sham M. Kakade,et al.  Robust Matrix Decomposition With Sparse Corruptions , 2011, IEEE Transactions on Information Theory.

[3]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[4]  S. J. Sutley,et al.  Mapping Advanced Argillic Alteration at Cuprite, Nevada, Using Imaging Spectroscopy , 2014 .

[5]  C. Stein,et al.  Estimation with Quadratic Loss , 1992 .

[6]  Dimitris G. Manolakis,et al.  Comparative analysis of hyperspectral adaptive matched filter detectors , 2000, SPIE Defense + Commercial Sensing.

[7]  L. Scharf,et al.  The CFAR adaptive subspace detector is a scale-invariant GLRT , 1998, Ninth IEEE Signal Processing Workshop on Statistical Signal and Array Processing (Cat. No.98TH8381).

[8]  Jun Qin,et al.  Low-Rank and Sparsity Analysis Applied to Speech Enhancement Via Online Estimated Dictionary , 2016, IEEE Signal Processing Letters.

[9]  Lei Zhang,et al.  Robust Principal Component Analysis with Complex Noise , 2014, ICML.

[10]  Constantine Caramanis,et al.  Robust PCA via Outlier Pursuit , 2010, IEEE Transactions on Information Theory.

[11]  Jean-Philippe Ovarlez,et al.  Robust Model Order Selection in Large Dimensional Elliptically Symmetric Noise , 2017 .

[12]  Olivier Ledoit,et al.  Honey, I Shrunk the Sample Covariance Matrix , 2003 .

[13]  J. Nathan Kutz,et al.  Dynamic Mode Decomposition for Real-Time Background/Foreground Separation in Video , 2014, ArXiv.

[14]  Douglas Kelker,et al.  DISTRIBUTION THEORY OF SPHERICAL DISTRIBUTIONS AND A LOCATION-SCALE PARAMETER GENERALIZATION , 2016 .

[15]  Yacine Chitour,et al.  Shrinkage covariance matrix estimator applied to STAP detection , 2014, 2014 IEEE Workshop on Statistical Signal Processing (SSP).

[16]  Glenn Healey,et al.  Models and methods for automated material identification in hyperspectral imagery acquired under unknown illumination and atmospheric conditions , 1999, IEEE Trans. Geosci. Remote. Sens..

[17]  Nasser M. Nasrabadi,et al.  Regularized Spectral Matched Filter for Target Recognition in Hyperspectral Imagery , 2008, IEEE Signal Processing Letters.

[18]  Bell Telephone,et al.  ROBUST ESTIMATES, RESIDUALS, AND OUTLIER DETECTION WITH MULTIRESPONSE DATA , 1972 .

[19]  Stanley Osher,et al.  L1 unmixing and its application to hyperspectral image enhancement , 2009, Defense + Commercial Sensing.

[20]  M. K. Simon,et al.  Unified theory on wireless communication fading statistics based on SIRP , 2004, IEEE 5th Workshop on Signal Processing Advances in Wireless Communications, 2004..

[21]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[22]  Thierry Bouwmans,et al.  Foreground Detection via Robust Low Rank Matrix Decomposition Including Spatio-Temporal Constraint , 2012, ACCV Workshops.

[23]  Stephen J. Wright,et al.  Computational Methods for Sparse Solution of Linear Inverse Problems , 2010, Proceedings of the IEEE.

[24]  Frédéric Pascal,et al.  New model order selection in large dimension regime for complex elliptically symmetric noise , 2017, 2017 25th European Signal Processing Conference (EUSIPCO).

[25]  Thierry Bouwmans,et al.  Moving Object Detection via Robust Low Rank Matrix Decomposition with IRLS Scheme , 2012, ISVC.

[26]  Eric Truslow,et al.  Detection Algorithms in Hyperspectral Imaging Systems: An Overview of Practical Algorithms , 2014, IEEE Signal Processing Magazine.

[27]  Armando Manduca,et al.  Relaxed Conditions for Sparse Signal Recovery With General Concave Priors , 2009, IEEE Transactions on Signal Processing.

[28]  S. Sathiya Keerthi,et al.  A simple and efficient algorithm for gene selection using sparse logistic regression , 2003, Bioinform..

[29]  Dimitris G. Manolakis,et al.  Detection algorithms for hyperspectral imaging applications , 2002, IEEE Signal Process. Mag..

[30]  G. Watson Characterization of the subdifferential of some matrix norms , 1992 .

[31]  Jieping Ye,et al.  Multi-stage multi-task feature learning , 2012, J. Mach. Learn. Res..

[32]  Adrian Lewis,et al.  The mathematics of eigenvalue optimization , 2003, Math. Program..

[33]  Alexander F. H. Goetz,et al.  Effects of spectrometer band pass, sampling, and signal‐to‐noise ratio on spectral identification using the Tetracorder algorithm , 2003 .

[34]  Junfeng Yang,et al.  A Fast Algorithm for Edge-Preserving Variational Multichannel Image Restoration , 2009, SIAM J. Imaging Sci..

[35]  Bo Du,et al.  A Sparse Representation-Based Binary Hypothesis Model for Target Detection in Hyperspectral Images , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Gilad Lerman,et al.  Robust Stochastic Principal Component Analysis , 2014, AISTATS.

[37]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[38]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[39]  Lie Wang,et al.  Sparse Covariance Matrix Estimation With Eigenvalue Constraints , 2014, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[40]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[41]  Yi Zhou,et al.  Analysis of Robust PCA via Local Incoherence , 2015, NIPS.

[42]  Xiaoli Yu,et al.  Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution , 1990, IEEE Trans. Acoust. Speech Signal Process..

[43]  Jieping Ye,et al.  Sparse methods for biomedical data , 2012, SKDD.

[44]  Takeo Kanade,et al.  Robust L/sub 1/ norm factorization in the presence of outliers and missing data by alternative convex programming , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[45]  E. J. Kelly An Adaptive Detection Algorithm , 1986, IEEE Transactions on Aerospace and Electronic Systems.

[46]  Xiaodong Li,et al.  Stable Principal Component Pursuit , 2010, 2010 IEEE International Symposium on Information Theory.

[47]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[48]  John A. Richards,et al.  Remote Sensing Digital Image Analysis: An Introduction , 1999 .

[49]  Dacheng Tao,et al.  Manifold elastic net for sparse learning , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[50]  Michael J. Black,et al.  Robust Principal Component Analysis for Computer Vision , 2001, ICCV.

[51]  Fang-Xiang Wu,et al.  Sparse Representation for Classification of Tumors Using Gene Expression Data , 2009, Journal of biomedicine & biotechnology.

[52]  Gary A. Shaw,et al.  Hyperspectral Image Processing for Automatic Target Detection Applications , 2003 .

[53]  Bo Du,et al.  A Low-Rank and Sparse Matrix Decomposition-Based Mahalanobis Distance Method for Hyperspectral Anomaly Detection , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[54]  G. Giannakis,et al.  Sparsity control for robust principal component analysis , 2010, 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers.

[55]  Cun-Hui Zhang Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.

[56]  J. Neyman,et al.  INADMISSIBILITY OF THE USUAL ESTIMATOR FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION , 2005 .

[57]  Adam J. Rothman,et al.  Generalized Thresholding of Large Covariance Matrices , 2009 .

[58]  G. Shaw,et al.  Signal processing for hyperspectral image exploitation , 2002, IEEE Signal Process. Mag..

[59]  Qionghai Dai,et al.  Robust subspace segmentation via nonconvex low rank representation , 2016, Inf. Sci..

[60]  S. Mallat A wavelet tour of signal processing , 1998 .

[61]  Tong Zhang Multi-stage Convex Relaxation for Feature Selection , 2011, 1106.0565.

[62]  S Matteoli,et al.  A tutorial overview of anomaly detection in hyperspectral images , 2010, IEEE Aerospace and Electronic Systems Magazine.

[63]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[64]  Jianhua Z. Huang,et al.  Covariance matrix selection and estimation via penalised normal likelihood , 2006 .

[65]  Thierry Bouwmans,et al.  Foreground detection via robust low rank matrix factorization including spatial constraint with Iterative reweighted regression , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[66]  Frédéric Pascal Détection et Estimation en Environnement non Gaussien , 2006 .

[67]  M. Pourahmadi Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation , 1999 .

[68]  John Wright,et al.  Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization , 2009, NIPS.

[69]  Jocelyn Chanussot,et al.  Low-Rank Decomposition and Total Variation Regularization of Hyperspectral Video Sequences , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[70]  F. Lehmann,et al.  HyMap hyperspectral remote sensing to detect hydrocarbons , 2001 .

[71]  Dimitris G. Manolakis,et al.  Is there a best hyperspectral detection algorithm? , 2009, Defense + Commercial Sensing.

[72]  E. M. Winter,et al.  Anomaly detection from hyperspectral imagery , 2002, IEEE Signal Process. Mag..

[73]  Rama Chellappa,et al.  Sparsity inspired selection and recognition of iris images , 2009, 2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems.

[74]  J. Pons Robust target detection for Hyperspectral Imaging. , 2014 .

[75]  Frédéric Pascal,et al.  Anomaly detection and estimation in hyperspectral imaging using Random Matrix Theory tools , 2015, 2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[76]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.

[77]  Joel A. Tropp,et al.  Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit , 2006, Signal Process..

[78]  Dacheng Tao,et al.  GoDec: Randomized Lowrank & Sparse Matrix Decomposition in Noisy Case , 2011, ICML.

[79]  Soon Ki Jung,et al.  Robust background subtraction via online robust PCA using image decomposition , 2014, RACS '14.

[80]  Shinichi Nakajima,et al.  Sparse Additive Matrix Factorization for Robust PCA and Its Generalization , 2012, ACML.

[81]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[82]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[83]  Yacine Chitour,et al.  Generalized Robust Shrinkage Estimator and Its Application to STAP Detection Problem , 2013, IEEE Transactions on Signal Processing.

[84]  Tong Zhang,et al.  Analysis of Multi-stage Convex Relaxation for Sparse Regularization , 2010, J. Mach. Learn. Res..

[85]  Jocelyn Chanussot,et al.  Joint Reconstruction and Anomaly Detection From Compressive Hyperspectral Images Using Mahalanobis Distance-Regularized Tensor RPCA , 2018, IEEE Transactions on Geoscience and Remote Sensing.

[86]  M. Pourahmadi,et al.  Nonparametric estimation of large covariance matrices of longitudinal data , 2003 .

[87]  Sze Kim Pang,et al.  Robust detection using the SIRV background modelling for hyperspectral imaging , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[88]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[89]  Shinichi Nakajima,et al.  Variational Bayesian sparse additive matrix factorization , 2013, Machine Learning.

[90]  S. Dutta,et al.  Study of crop growth parameters using Airborne Imaging Spectrometer data , 2001 .

[91]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[92]  Dimitris Manolakis,et al.  Non Gaussian models for hyperspectral algorithm design and assessment , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[93]  Gonzalo Mateos,et al.  Robust PCA as Bilinear Decomposition With Outlier-Sparsity Regularization , 2011, IEEE Transactions on Signal Processing.

[94]  D. Manolakis,et al.  Hyperspectral Imaging Remote Sensing: Physics, Sensors, and Algorithms , 2016 .