Nodeless superconductivity in the noncentrosymmetric compound ThIrSi

The ThIrSi superconductor, with $T_c = 6.5$ K, is expected to show unusual features in view of its noncentrosymmetric structure and the presence of heavy elements featuring a sizable spin-orbit coupling. Here, we report a comprehensive study of its electronic properties by means of local-probe techniques: muon-spin rotation and relaxation ({\textmu}SR) and nuclear magnetic resonance (NMR). Both the superfluid density $\rho_\mathrm{sc}(T)$ (determined via transverse-field {\textmu}SR) and the spin-lattice relaxation rate $T_1^{-1}(T)$ (determined via NMR) suggest a nodeless superconductivity. Furthermore, the absence of spontaneous magnetic fields below $T_c$, as evinced from zero-field {\textmu}SR measurements, indicates a preserved time-reversal symmetry in the superconducting state of ThIrSi. Temperature-dependent upper critical fields as well as field-dependent superconducting muon-spin relaxations suggest the presence of multiple superconducting gaps in ThIrSi.

[1]  T. Shang,et al.  Evidence of fully gapped superconductivity in NbReSi: A combined μSR and NMR study , 2022, Physical Review B.

[2]  M. O. Ajeesh,et al.  Spin-triplet superconductivity in Weyl nodal-line semimetals , 2022, npj Quantum Materials.

[3]  H. Hosono,et al.  s-wave superconductivity in the noncentrosymmetric W3Al2C superconductor: an NMR study , 2022, Journal of physics. Condensed matter : an Institute of Physics journal.

[4]  J. Zhao,et al.  Multigap superconductivity in centrosymmetric and noncentrosymmetric rhenium-boron superconductors , 2021, Physical Review B.

[5]  Jianzhou Zhao,et al.  Multigap superconductivity in the Mo5PB2 boron–phosphorus compound , 2020, New Journal of Physics.

[6]  S. Ghosh,et al.  Recent progress on superconductors with time-reversal symmetry breaking , 2020, Journal of physics. Condensed matter : an Institute of Physics journal.

[7]  Paweł T. Jochym,et al.  Electronic and lattice properties of noncentrosymmetric superconductors ThTSi (T=Co, Ir, Ni, and Pt) , 2019, Physical Review B.

[8]  M. Bobnar,et al.  Enhanced Tc and multiband superconductivity in the fully-gapped ReBe22 superconductor , 2019, New Journal of Physics.

[9]  M. Salamon,et al.  Superconductivity and spin–orbit coupling in non-centrosymmetric materials: a review , 2016, Reports on progress in physics. Physical Society.

[10]  Masatoshi Sato,et al.  Topological superconductors: a review , 2016, Reports on progress in physics. Physical Society.

[11]  Y. Nakajima,et al.  Beyond triplet: Unconventional superconductivity in a spin-3/2 topological semimetal , 2016, Science Advances.

[12]  C. Kallin,et al.  Chiral superconductors , 2015, Reports on progress in physics. Physical Society.

[13]  A. Amato,et al.  Absence of time-reversal symmetry breaking in the noncentrosymmetric superconductor Mo 3 Al 2 C , 2014 .

[14]  A. Yaresko,et al.  Dirac surface states and nature of superconductivity in Noncentrosymmetric BiPd , 2014, Nature Communications.

[15]  A. Amato,et al.  SrPt 3 P : A two-band single-gap superconductor , 2014, 1404.5473.

[16]  Q. Gibson,et al.  Noncentrosymmetric superconductor with a bulk three-dimensional Dirac cone gapped by strong spin-orbit coupling , 2013, 1310.8368.

[17]  J. Akimitsu,et al.  Tunneling break-junction measurements of the superconducting gap in Y2C3 , 2013 .

[18]  Y. Nakajima,et al.  Two-band superconductivity featuring different anisotropies in the ternary iron silicide Lu 2 Fe 3 Si 5 , 2012, 1207.1502.

[19]  A. Suter,et al.  Musrfit: A Free Platform-Independent Framework for μSR Data Analysis , 2011, 1111.1569.

[20]  A. Gurevich Iron-based superconductors at high magnetic fields , 2011 .

[21]  P. D. Réotier,et al.  Muon Spin Rotation, Relaxation, and Resonance: Applications to Condensed Matter , 2011 .

[22]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[23]  T. Yokoyama,et al.  Anomalous Andreev bound state in noncentrosymmetric superconductors. , 2010, Physical review letters.

[24]  R. Prozorov,et al.  Superfluid density and specific heat within a self-consistent scheme for a two-band superconductor , 2009, 0905.0029.

[25]  Masatoshi Sato,et al.  Topological phases of noncentrosymmetric superconductors: Edge states, Majorana fermions, and non-Abelian statistics , 2008, 0811.3864.

[26]  Xiyu Zhu,et al.  Upper critical field, Hall effect and magnetoresistance in the iron-based layered superconductor LaFeAsO0.9F0.1−δ , 2008, 0803.0623.

[27]  J. Akimitsu,et al.  Multigap superconductivity in sesquicarbides La2C3 and Y2C3. , 2008, Physical review letters.

[28]  K. Kumagai,et al.  NMR study of noncentrosymmetric superconductor Li2Pt3B , 2007 .

[29]  J. Akimitsu,et al.  Superconductivity of Y2C3 Investigated by Specific Heat Measurement , 2007 .

[30]  J. Akimitsu,et al.  Multigap superconductivity in Y2C3: A 13C-NMR study , 2006 .

[31]  A. Amato,et al.  Effect of two gaps on the flux-lattice internal field distribution: evidence of two length scales in Mg(1-x)AlxB2 from muSR. , 2004, Physical review letters.

[32]  D. Larbalestier,et al.  Very high upper critical fields in MgB2 produced by selective tuning of impurity scattering , 2003, cond-mat/0305474.

[33]  H. Matsui,et al.  The origin of multiple superconducting gaps in MgB2 , 2003, Nature.

[34]  E. Brandt Properties of the ideal Ginzburg-Landau vortex lattice , 2003, cond-mat/0304237.

[35]  F. Manzano,et al.  Magnetic penetration depth of MgB2 , 2003 .

[36]  K. Nenkov,et al.  The upper critical field in superconducting MgB2 , 2001 .

[37]  J. Nagamatsu,et al.  Superconductivity at 39 K in magnesium diboride , 2001, Nature.

[38]  S. Blundell Spin-polarized muons in condensed matter physics , 1999, cond-mat/0207699.

[39]  A. Amato Heavy-fermion systems studied by μSR technique , 1997 .

[40]  W. Barford,et al.  The theory of the measurement of the London penetration depth in uniaxial type II superconductors by muon spin rotation , 1988 .

[41]  P. Hagenmuller,et al.  Etude de nouveaux supraconducteurs ThIrxSi2−x (0≦x≦1) par chaleur specifique a basse temperature et spectroscopie XPS , 1986 .

[42]  P. Hagenmuller,et al.  Structural and electrical properties of new silicides: ThCoxSi2−x (0 ⩽ x ⩽ 1) and ThTSi (T = Ni, Pt) , 1985 .

[43]  E. Helfand,et al.  Temperature and Purity Dependence of the Superconducting Critical Field, H c 2 . III. Electron Spin and Spin-Orbit Effects , 1966 .

[44]  H. Alloul Introduction to Superconductivity , 2011 .

[45]  E. Collings The Upper Critical Field , 1986 .

[46]  D. MacLaughlin Magnetic resonance in the superconducting state , 1976 .