Genome-wide Analysis and Expression Divergence of the Trihelix family in Brassica Rapa: Insight into the Evolutionary Patterns in Plants

[1]  D. J. C. November Comprehensive , 2020, Encyclopedia of the UN Sustainable Development Goals.

[2]  Mahmudova Shafagat Application Opportunities of Biometric Technology in Electron Libraries , 2016 .

[3]  Bo Hu,et al.  GSDS 2.0: an upgraded gene feature visualization server , 2014, Bioinform..

[4]  Y. Li,et al.  Genome-wide analysis of the MADS-box gene family in Brassica rapa (Chinese cabbage) , 2014, Molecular Genetics and Genomics.

[5]  Amborella Genome The Amborella Genome and the Evolution of Flowering Plants , 2013, Science.

[6]  Wei Tang,et al.  Draft genome of the kiwifruit Actinidia chinensis , 2013, Nature Communications.

[7]  Xiaowu Wang,et al.  Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa , 2013, BMC Genomics.

[8]  Cheng Soon Ong,et al.  GWIS - model-free, fast and exhaustive search for epistatic interactions in case-control GWAS , 2013, BMC Genomics.

[9]  Niranjan Nagarajan,et al.  The draft genome of sweet orange (Citrus sinensis) , 2012, Nature Genetics.

[10]  Tae-Ho Lee,et al.  PGDD: a database of gene and genome duplication in plants , 2012, Nucleic Acids Res..

[11]  Xiaowu Wang,et al.  Preferential Retention of Circadian Clock Genes during Diploidization following Whole Genome Triplication in Brassica rapa[W] , 2012, Plant Cell.

[12]  L. Du,et al.  Plant-specific trihelix transcription factor AtGT2L interacts with calcium/calmodulin and responds to cold and salt stresses. , 2012, Plant science : an international journal of experimental plant biology.

[13]  P. Brewer,et al.  The trihelix family of transcription factors--light, stress and development. , 2012, Trends in plant science.

[14]  Nan Miao,et al.  Diversification, phylogeny and evolution of auxin response factor (ARF) family: insights gained from analyzing maize ARF genes , 2012, Molecular Biology Reports.

[15]  M. Willmann,et al.  Is there a role for trihelix transcription factors in embryo maturation? , 2012, Plant signaling & behavior.

[16]  Jeremy D. DeBarry,et al.  MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity , 2012, Nucleic acids research.

[17]  David M. Goodstein,et al.  Phytozome: a comparative platform for green plant genomics , 2011, Nucleic Acids Res..

[18]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[19]  J. Poulain,et al.  The genome of the mesopolyploid crop species Brassica rapa , 2011, Nature Genetics.

[20]  Joaquín Dopazo,et al.  Evidence for short-time divergence and long-time conservation of tissue-specific expression after gene duplication , 2011, Briefings Bioinform..

[21]  Claude W. dePamphilis,et al.  Ancestral polyploidy in seed plants and angiosperms , 2011, Nature.

[22]  Michaël Bekaert,et al.  Two-Phase Resolution of Polyploidy in the Arabidopsis Metabolic Network Gives Rise to Relative and Absolute Dosage Constraints[W] , 2011, Plant Cell.

[23]  J. Ludwig-Müller Auxin conjugates: their role for plant development and in the evolution of land plants. , 2011, Journal of experimental botany.

[24]  Matthew R Willmann,et al.  MicroRNAs Regulate the Timing of Embryo Maturation in Arabidopsis1[W][OA] , 2011, Plant Physiology.

[25]  K. Miura,et al.  The Arabidopsis GTL1 Transcription Factor Regulates Water Use Efficiency and Drought Tolerance by Modulating Stomatal Density via Transrepression of SDD1[W][OA] , 2010, Plant Cell.

[26]  B. Mueller‐Roeber,et al.  Genome-Wide Phylogenetic Comparative Analysis of Plant Transcriptional Regulation: A Timeline of Loss, Gain, Expansion, and Correlation with Complexity , 2010, Genome biology and evolution.

[27]  F. Kondrashov,et al.  The evolution of gene duplications: classifying and distinguishing between models , 2010, Nature Reviews Genetics.

[28]  L. Xiong,et al.  Systematic analysis of GT factor family of rice reveals a novel subfamily involved in stress responses , 2010, Molecular Genetics and Genomics.

[29]  J. P. Fabi,et al.  Molecular cloning and characterization of a ripening-induced polygalacturonase related to papaya fruit softening. , 2009, Plant physiology and biochemistry : PPB.

[30]  Birgit Kersten,et al.  PlnTFDB: updated content and new features of the plant transcription factor database , 2009, Nucleic Acids Res..

[31]  S. Chen,et al.  Soybean Trihelix Transcription Factors GmGT-2A and GmGT-2B Improve Plant Tolerance to Abiotic Stresses in Transgenic Arabidopsis , 2009, PloS one.

[32]  T. Wada,et al.  The Trihelix Transcription Factor GTL1 Regulates Ploidy-Dependent Cell Growth in the Arabidopsis Trichome[W][OA] , 2009, The Plant Cell Online.

[33]  Mikael Bodén,et al.  MEME Suite: tools for motif discovery and searching , 2009, Nucleic Acids Res..

[34]  Xiang Li,et al.  Repression of Seed Maturation Genes by a Trihelix Transcriptional Repressor in Arabidopsis Seedlings[W] , 2009, The Plant Cell Online.

[35]  B. Mueller‐Roeber,et al.  Green Transcription Factors: A Chlamydomonas Overview , 2008, Genetics.

[36]  T. Vision,et al.  Divergence in expression between duplicated genes in Arabidopsis. , 2007, Molecular biology and evolution.

[37]  Jun Li,et al.  KaKs_Calculator: Calculating Ka and Ks Through Model Selection and Model Averaging , 2007, Genom. Proteom. Bioinform..

[38]  R. Veitia,et al.  The Gene Balance Hypothesis: From Classical Genetics to Modern Genomics , 2007, The Plant Cell Online.

[39]  Xianran Li,et al.  Origin of seed shattering in rice (Oryza sativa L.) , 2007, Planta.

[40]  T. Mitchell-Olds,et al.  The ABC's of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. , 2006, Trends in plant science.

[41]  B. Haas,et al.  Comparative Genomics of Brassica oleracea and Arabidopsis thaliana Reveal Gene Loss, Fragmentation, and Dispersal after Polyploidy[W][OA] , 2006, The Plant Cell Online.

[42]  T. Sang,et al.  Rice Domestication by Reducing Shattering , 2006, Science.

[43]  X. Gu,et al.  Expression divergence between duplicate genes. , 2005, Trends in genetics : TIG.

[44]  Stefan R. Henz,et al.  A gene expression map of Arabidopsis thaliana development , 2005, Nature Genetics.

[45]  P. Brewer,et al.  PETAL LOSS, a trihelix transcription factor gene, regulates perianth architecture in the Arabidopsis flower , 2004, Development.

[46]  David Meinke,et al.  Identification of Genes Required for Embryo Development in Arabidopsis1[w] , 2004, Plant Physiology.

[47]  Daoxiu Zhou,et al.  Analysis of GT‐3a identifies a distinct subgroup of trihelix DNA‐binding transcription factors in Arabidopsis , 2004, FEBS letters.

[48]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[49]  B. Han,et al.  Transcript abundance of rml1, encoding a putative GT1-like factor in rice, is up-regulated by Magnaporthe grisea and down-regulated by light. , 2004, Gene.

[50]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[51]  R. Atkinson,et al.  OVEREXPRESSION OF POLYGALACTURONASE IN TRANSGENIC APPLE TREES LEADS TO A RANGE OF NOVEL PHENOTYPES INVOLVING CHANGES IN CELL ADHESION , 2002 .

[52]  H. Furuhashi,et al.  Trihelix DNA-binding protein with specificities for two distinct cis-elements: both important for light down-regulated and dark-inducible gene expression in higher plants. , 2001, The Journal of biological chemistry.

[53]  R. R. Samaha,et al.  Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. , 2000, Science.

[54]  M. A. Koch,et al.  Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). , 2000, Molecular biology and evolution.

[55]  Y. Nagano Several features of the GT-factor trihelix domain resemble those of the Myb DNA-binding domain. , 2000, Plant Physiology.

[56]  J. Le gourrierec,et al.  Transcriptional activation by Arabidopsis GT-1 may be through interaction with TFIIA-TBP-TATA complex. , 1999, The Plant journal : for cell and molecular biology.

[57]  Zhou,et al.  Regulatory mechanism of plant gene transcription by GT-elements and GT-factors. , 1999, Trends in plant science.

[58]  R. Vierstra,et al.  Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants , 1998, Plant Molecular Biology.

[59]  Ross Ihaka,et al.  Gentleman R: R: A language for data analysis and graphics , 1996 .

[60]  P. Quail,et al.  GT-2: in vivo transcriptional activation activity and definition of novel twin DNA binding domains with reciprocal target sequence selectivity. , 1996, The Plant cell.

[61]  E. Lam,et al.  A tobacco DNA binding protein that interacts with a light-responsive box II element. , 1992, The Plant cell.

[62]  S. Kay,et al.  Sequence‐specific interactions of a pea nuclear factor with light‐responsive elements upstream of the rbcS‐3A gene. , 1987, The EMBO journal.

[63]  D. Sankoff,et al.  Polyploidy and angiosperm diversification. , 2009, American journal of botany.

[64]  Thomas D. Schmittgen,et al.  Real-Time Quantitative PCR , 2002 .