Selecting between Autoregressive Conditional Heteroskedasticity Models: An Empirical Application to the Volatility of Stock Returns in Peru

An extensive family of univariate models of autoregressive conditional heteroskedasticity is applied to Peru’s daily stock market returns for the period January 3, 1992 to March 30, 2012 with four different specifications related to the distribution of the disturbance term. This concerns capturing the asymmetries of the behavior of the volatility, as well as the presence of heavy tails in these time series. Using different statistical tests and different criteria, the results show that: (i) the FIGARCH (1,1)-t is the best model among all symmetric models while the FIEGARCH (1,1)-Sk is selected from the class of asymmetrical models. Also, the model FIAPARCH (1,1)-t is selected from the class of asymmetric power models; (ii) the three models capture well the behavior of the conditional volatility; (iii) however, the empirical distribution of the standardized residuals shows that the behavior of the tails is not well captured by either model; (iv) the three models suggest the presence of long memory with estimates of the fractional parameter close to the region of nonstationarity

[1]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[2]  G. Rodríguez,et al.  Distinguishing between True and Spurious Long Memory in the Volatility of Stock Market Returns in Latin America , 2014 .

[3]  G. Rodríguez,et al.  Some stylized facts of return in the foreign exchange and stock markets in Peru , 2013 .

[4]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[5]  A. Pérez,et al.  Modelos de memoria larga para series económicas y financieras , 2015 .

[6]  E. Xekalaki,et al.  Autoregressive Conditional Heteroscedasticity (ARCH) Models: A Review , 2004 .

[7]  Fredy Ocaris Pérez Ramírez,et al.  Análisis de la volatilidad del índicegeneral de la bolsa de valores deColombia utilizando modelos ARCH , 2006 .

[8]  G. Rodríguez,et al.  APPLICATION OF A SHORT MEMORY MODEL WITH RANDOM LEVEL SHIFTS TO THE VOLATILITY OF LATIN AMERICAN STOCK MARKET RETURNS , 2015 .

[9]  L. Glosten,et al.  On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks , 1993 .

[10]  H. Iemoto Modelling the persistence of conditional variances , 1986 .

[11]  James B. McDonald,et al.  A Flexible Parametric Garch Model With An Application To Exchange Rates , 2001 .

[12]  Rufus Ayodeji Modelling Naira/Dollar Exchange Rate Volatility: Application Of Garch And Assymetric Models , 2009 .

[13]  Conditional Exchange-Rate Volatility and the Volume of International Trade: Evidence from the Early 1900s , 1992 .

[14]  J. Ignacio.,et al.  Daily seasonality and stock market reforms in Spain , 1995 .

[15]  Zhongjun Qu,et al.  A Test Against Spurious Long Memory , 2009 .

[16]  Y. Tse,et al.  Residual-Based Diagnostics for Conditional Heteroscedasticity Models , 2002 .

[17]  James Davidson,et al.  Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model , 2004 .

[18]  Dongcheol Kim,et al.  Alternative Models for the Conditional Heteroscedasticity of Stock Returns , 1994 .

[19]  T. Mikosch,et al.  Nonstationarities in Financial Time Series, the Long-Range Dependence, and the IGARCH Effects , 2004, Review of Economics and Statistics.

[20]  T. Bollerslev,et al.  MODELING AND PRICING LONG- MEMORY IN STOCK MARKET VOLATILITY , 1996 .

[21]  Stephen L Taylor,et al.  Modelling Financial Time Series , 1987 .

[22]  Professors Engle,et al.  MODELING THE PERSISTENCE OF CONDITIONAL VARIANCES: A COMMENT , 1986 .

[23]  Pierre Perron,et al.  Long-Memory and Level Shifts in the Volatility of Stock Market Return Indices , 2008 .

[24]  Siem Jan Koopman,et al.  The stochastic volatility in mean model: empirical evidence from international stock markets , 2002 .

[25]  Volatility of stock market and exchange rate returns in Peru: Long memory or short memory with level shifts? , 2016 .

[26]  R. Baillie,et al.  Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .

[27]  Anil K. Bera,et al.  ARCH Models: Properties, Estimation and Testing , 1993 .

[28]  Thomas Mikosch,et al.  Changes of structure in financial time series and the GARCH model , 2004 .

[29]  Pierre Perron,et al.  Forecasting return volatility: Level shifts with varying jump probability and mean reversion , 2014 .

[30]  A. David,et al.  Fluctuating Confidence in Stock Markets: Implications for Returns and Volatility , 1997, Journal of Financial and Quantitative Analysis.

[31]  P. Perron,et al.  Modelling exchange rate volatility with random level shifts , 2017 .

[32]  L. A. Dobaño Determinantes del tipo de cambio: un modelo Arch , 1997 .

[33]  Takatoshi Ito,et al.  Meteor Showers or Heat Waves? Heteroskedastic Intra-Daily Volatility in the Foreign Exchange Market , 1988 .

[34]  Christian Conrad,et al.  Multivariate Fractionally Integrated APARCH Modeling of Stock Market Volatility: A Multi-Country Study , 2009 .

[35]  Antonio Ávalos,et al.  Comportamiento del tipo de cambio real y desempeño económico en México , 1995 .

[36]  Franz C. Palm,et al.  Simple diagnostic procedures for modeling financial time series , 1997 .

[37]  F. Diebold,et al.  Long memoryand regime switching , 2001 .

[38]  Russell P. Robins,et al.  Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model , 1987 .

[39]  J. Zakoian Threshold heteroskedastic models , 1994 .

[40]  Manolis Xanthakis,et al.  Day of the week effect on the Greek stock market , 1995 .

[41]  G. Rodríguez Modeling Latin-American stock markets volatility: Varying probabilities and mean reversion in a random level shift model , 2016 .

[42]  S. Laurent,et al.  Value-at-Risk for long and short trading positions , 2003 .

[43]  G. Rodríguez,et al.  An application of a random level shifts model to the volatility of Peruvian stock and exchange rate returns , 2016 .

[44]  Panayiotis Theodossiou,et al.  Time‐series properties and predictability of Greek exchange rates , 1994 .

[45]  R. Engle GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics , 2001 .

[46]  Tim Bollerslev,et al.  Glossary to ARCH (GARCH) , 2008 .

[47]  Haim Shalit,et al.  Estimating stock market volatility using asymmetric GARCH models , 2008 .

[48]  Yiu Kuen Tse,et al.  The conditional heteroscedasticity of the yen-dollar exchange rate , 1998 .

[49]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[50]  K. French Stock returns and the weekend effect , 1980 .

[51]  Richard T. Baillie,et al.  Stock Returns and Volatility , 1990, Journal of Financial and Quantitative Analysis.