Artful interfaces within biological materials

[1]  Stephen A. Wainwright,et al.  Mechanical Design in Organisms , 2020 .

[2]  Mason N. Dean,et al.  Composite model of the shark's skeleton in bending: A novel architecture for biomimetic design of functional compression bias , 2010 .

[3]  Thomas Speck,et al.  The attachment strategy of English ivy: a complex mechanism acting on several hierarchical levels , 2010, Journal of The Royal Society Interface.

[4]  M. Boyce,et al.  Quantitative microstructural studies of the armor of the marine threespine stickleback (Gasterosteus aculeatus). , 2010, Journal of structural biology.

[5]  Doron Shilo,et al.  Nanometer‐Scale Mapping of Elastic Modules in Biogenic Composites: The Nacre of Mollusk Shells , 2010 .

[6]  Brian R. Lawn,et al.  Teeth: Among Nature's Most Durable Biocomposites , 2010 .

[7]  Hongbo Zeng,et al.  Protein- and Metal-dependent Interactions of a Prominent Protein in Mussel Adhesive Plaques* , 2010, The Journal of Biological Chemistry.

[8]  Sunita P Ho,et al.  The biomechanical characteristics of the bone-periodontal ligament-cementum complex. , 2010, Biomaterials.

[9]  G. Mayer,et al.  Influence of moisture on the mechanical behavior of a natural composite. , 2010, Acta biomaterialia.

[10]  Xiaohong Wang,et al.  NanoSIMS: Insights into the Organization of the Proteinaceous Scaffold within Hexactinellid Sponge Spicules , 2010, Chembiochem : a European journal of chemical biology.

[11]  Peter Fratzl,et al.  Iron-Clad Fibers: A Metal-Based Biological Strategy for Hard Flexible Coatings , 2010, Science.

[12]  R. Ritchie,et al.  On the Mechanistic Origins of Toughness in Bone , 2010 .

[13]  C. Neinhuis,et al.  G-fibres in storage roots of Trifolium pratense (Fabaceae): tensile stress generators for contraction. , 2010, The Plant journal : for cell and molecular biology.

[14]  Liu Yang,et al.  Histomorphometric analysis of adult articular calcified cartilage zone. , 2009, Journal of structural biology.

[15]  F. Barth,et al.  Biomaterial systems for mechanosensing and actuation , 2009, Nature.

[16]  Francois Barthelat,et al.  Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials , 2009 .

[17]  Adam P. Summers,et al.  Ontogeny of the tessellated skeleton: insight from the skeletal growth of the round stingray Urobatis halleri , 2009, Journal of anatomy.

[18]  P. Fratzl,et al.  Sacrificial Ionic Bonds Need To Be Randomly Distributed To Provide Shear Deformability , 2009, Nano letters.

[19]  I. Burgert,et al.  Actuation systems in plants as prototypes for bioinspired devices , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  S. Weiner,et al.  The grinding tip of the sea urchin tooth exhibits exquisite control over calcite crystal orientation and Mg distribution , 2009, Proceedings of the National Academy of Sciences.

[21]  E. Zolotoyabko,et al.  Nacre in Mollusk Shells as a Multilayered Structure with Strain Gradient , 2009 .

[22]  Thomas Speck,et al.  Structure-function relationships of different vascular bundle types in the stem of the Mexican fanpalm (Washingtonia robusta). , 2009, The New phytologist.

[23]  Sunita P Ho,et al.  Structure, chemical composition and mechanical properties of human and rat cementum and its interface with root dentin. , 2009, Acta biomaterialia.

[24]  Joanna Aizenberg,et al.  Biological and Biomimetic Materials , 2009 .

[25]  Peter Fratzl,et al.  Mechanical Function of a Complex Three‐Dimensional Suture Joining the Bony Elements in the Shell of the Red‐Eared Slider Turtle , 2009 .

[26]  J. Waite,et al.  How Nature Modulates a Fiber's Mechanical Properties: Mechanically Distinct Fibers Drawn from Natural Mesogenic Block Copolymer Variants , 2009 .

[27]  R. Ritchie,et al.  Tough, Bio-Inspired Hybrid Materials , 2008, Science.

[28]  George Jeronimidis,et al.  Stress generation in the tension wood of poplar is based on the lateral swelling power of the G-layer. , 2008, The Plant journal : for cell and molecular biology.

[29]  Thomas Speck,et al.  Stiffness gradients in vascular bundles of the palm Washingtonia robusta , 2008, Proceedings of the Royal Society B: Biological Sciences.

[30]  S. Gorb,et al.  Structures in the cell wall that enable hygroscopic movement of wheat awns. , 2008, Journal of structural biology.

[31]  Peter Fratzl,et al.  Cellulose fibrils direct plant organ movements. , 2008, Faraday discussions.

[32]  Peter Fratzl,et al.  Bone fracture: When the cracks begin to show. , 2008, Nature materials.

[33]  R O Ritchie,et al.  The true toughness of human cortical bone measured with realistically short cracks. , 2008, Nature materials.

[34]  Stanislav N Gorb,et al.  Biological attachment devices: exploring nature's diversity for biomimetics , 2008, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[35]  S. Weiner,et al.  Forming nacreous layer of the shells of the bivalves Atrina rigida and Pinctada margaritifera: an environmental- and cryo-scanning electron microscopy study. , 2008, Journal of structural biology.

[36]  J. Aizenberg,et al.  Effects of Laminate Architecture on Fracture Resistance of Sponge Biosilica: Lessons from Nature , 2008 .

[37]  Frank W. Zok,et al.  The Transition from Stiff to Compliant Materials in Squid Beaks , 2008, Science.

[38]  J. Waite,et al.  Holdfast heroics: comparing the molecular and mechanical properties of Mytilus californianus byssal threads , 2007, Journal of Experimental Biology.

[39]  S. Marshall,et al.  The tooth attachment mechanism defined by structure, chemical composition and mechanical properties of collagen fibers in the periodontium. , 2007, Biomaterials.

[40]  Richard Weinkamer,et al.  Nature’s hierarchical materials , 2007 .

[41]  P. Fratzl,et al.  Hindered Crack Propagation in Materials with Periodically Varying Young's Modulus—Lessons from Biological Materials , 2007 .

[42]  Peter Fratzl,et al.  Biomimetic materials research: what can we really learn from nature's structural materials? , 2007, Journal of The Royal Society Interface.

[43]  J. Waite,et al.  A nonmineralized approach to abrasion-resistant biomaterials , 2007, Proceedings of the National Academy of Sciences.

[44]  Georg E Fantner,et al.  Protective coatings on extensible biofibres. , 2007, Nature materials.

[45]  Peter Fratzl,et al.  Tensile and compressive stresses in tracheids are induced by swelling based on geometrical constraints of the wood cell , 2007, Planta.

[46]  R. Elbaum,et al.  The Role of Wheat Awns in the Seed Dispersal Unit , 2007, Science.

[47]  Joanna Aizenberg,et al.  Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum. , 2007, Journal of structural biology.

[48]  Delphine Gourdon,et al.  Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3 , 2007, Proceedings of the National Academy of Sciences.

[49]  G. Stucky,et al.  Mineral minimization in nature's alternative teeth , 2007, Journal of The Royal Society Interface.

[50]  Wolfgang Wagermaier,et al.  Cooperative deformation of mineral and collagen in bone at the nanoscale , 2006, Proceedings of the National Academy of Sciences.

[51]  Michael Kerschnitzki,et al.  Evidence for an elementary process in bone plasticity with an activation enthalpy of 1 eV , 2006, Journal of The Royal Society Interface.

[52]  Asher A. Friesem,et al.  Relations Between Shape, Materials Properties, and Function in Biological Materials Using Laser Speckle Interferometry: In situ Tooth Deformation , 2006 .

[53]  James C. Weaver,et al.  Micromechanical properties of biological silica in skeletons of deep-sea sponges , 2006 .

[54]  S. Weiner,et al.  Mineralized biological materials: A perspective on interfaces and interphases designed over millions of years , 2006, Biointerphases.

[55]  Adam P. Summers,et al.  Mineralized cartilage in the skeleton of chondrichthyan fishes. , 2006, Zoology.

[56]  M. Burghammer,et al.  Spiral twisting of fiber orientation inside bone lamellae , 2006, Biointerphases.

[57]  Huajian Gao,et al.  Application of Fracture Mechanics Concepts to Hierarchical Biomechanics of Bone and Bone-like Materials , 2006 .

[58]  Steve Weiner,et al.  Structure and mechanical properties of the soft zone separating bulk dentin and enamel in crowns of human teeth: insight into tooth function. , 2006, Journal of structural biology.

[59]  Steve Weiner,et al.  Mollusk shell formation: mapping the distribution of organic matrix components underlying a single aragonitic tablet in nacre. , 2006, Journal of structural biology.

[60]  J. Quintana,et al.  Anisotropic lattice distortions in the mollusk-made aragonite: a widespread phenomenon. , 2006, Journal of structural biology.

[61]  G. Mayer,et al.  Rigid Biological Systems as Models for Synthetic Composites , 2005, Science.

[62]  Ralph Spolenak,et al.  Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Jacqueline A. Cutroni,et al.  Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture , 2005, Nature materials.

[64]  J. Aizenberg,et al.  Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale , 2005, Science.

[65]  Elena Pasternak,et al.  The principle of topological interlocking in extraterrestrial construction , 2005 .

[66]  R. O. Ritchie,et al.  The dentin–enamel junction and the fracture of human teeth , 2005, Nature materials.

[67]  P. Fratzl,et al.  Two different correlations between nanoindentation modulus and mineral content in the bone-cartilage interface. , 2005, Journal of structural biology.

[68]  L. Mahadevan,et al.  How the Venus flytrap snaps , 2005, Nature.

[69]  I. Burgert,et al.  Adaptive Growth of Gymnosperm Branches-Ultrastructural and Micromechanical Examinations , 2004, Journal of Plant Growth Regulation.

[70]  J. Quintana,et al.  Anisotropic lattice distortions in biogenic aragonite , 2004, Nature materials.

[71]  G W Marshall,et al.  Evaluation of a new modulus mapping technique to investigate microstructural features of human teeth. , 2004, Journal of biomechanics.

[72]  Jozef Keckes,et al.  Structure–function relationships of four compression wood types: micromechanical properties at the tissue and fibre level , 2004, Trees.

[73]  Jozef Keckes,et al.  Cell-wall recovery after irreversible deformation of wood , 2003, Nature materials.

[74]  A K Soh,et al.  Structural and mechanical properties of the organic matrix layers of nacre. , 2003, Biomaterials.

[75]  S. Herring,et al.  Biomechanics of the rostrum and the role of facial sutures , 2003, Journal of morphology.

[76]  Elena Pasternak,et al.  Topological interlocking of protective tiles for the space shuttle , 2003 .

[77]  Zhiyong Tang,et al.  Nanostructured artificial nacre , 2003, Nature materials.

[78]  Huajian Gao,et al.  Materials become insensitive to flaws at nanoscale: Lessons from nature , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[79]  R. Ritchie,et al.  Mechanistic fracture criteria for the failure of human cortical bone , 2003, Nature materials.

[80]  J. Ralphs,et al.  The skeletal attachment of tendons--tendon "entheses". , 2002, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[81]  John D. Currey,et al.  Bones: Structure and Mechanics , 2002 .

[82]  P. Fratzl,et al.  Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[83]  Arcady Dyskin,et al.  Toughening by Fragmentation—How Topology Helps , 2001 .

[84]  P. Fratzl,et al.  Graded Microstructure and Mechanical Properties of Human Crown Dentin , 2001, Calcified Tissue International.

[85]  Zhigang Suo,et al.  Deformation mechanisms in nacre , 2001 .

[86]  S. Suresh,et al.  Graded Materials for Resistance to Contact Deformation and Damage , 2001, Science.

[87]  P. Fratzl,et al.  Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles. , 2000, Biophysical journal.

[88]  Marc A. Meyers,et al.  Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells , 2000 .

[89]  Mario Viani,et al.  Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites , 1999, Nature.

[90]  C. Brinker,et al.  Continuous self-assembly of organic–inorganic nanocomposite coatings that mimic nacre , 1998, Nature.

[91]  C. Dawson,et al.  How pine cones open , 1997, Nature.

[92]  S. Weiner,et al.  Strain-structure relations in human teeth using Moiré fringes. , 1997, Journal of biomechanics.

[93]  K. Schulgasser,et al.  THE MECHANICS OF SEED EXPULSION IN ACANTHACEAE , 1995 .

[94]  D. W. Thompson On Growth and Form: The Complete Revised Edition , 1992 .

[95]  George Sanger,et al.  Structure and Mechanics , 1991 .

[96]  K. Kendall,et al.  A simple way to make tough ceramics , 1990, Nature.

[97]  A. P. Jackson,et al.  The mechanical design of nacre , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[98]  Markus J. Buehler,et al.  Tu(r)ning weakness to strength , 2010 .

[99]  This journal is © 2009 The Royal SocietyDownloaded from , 2009 .

[100]  Marc André Meyers,et al.  Mechanical strength of abalone nacre: role of the soft organic layer. , 2008, Journal of the mechanical behavior of biomedical materials.

[101]  Paul Roschger,et al.  From brittle to ductile fracture of bone , 2006, Nature materials.

[102]  Martin Rb Porosity and specific surface of bone. , 1984 .