Iterative picture restoration using video optical feedback

Abstract TV optical feedback methods have been used so far for spatial filtering, for solving partial differential equations, as operational amplifiers and as flip-flop arrays. Here we propose to use TV optical feedback as an analog computer that performs iterative algorithms on picture inputs. An investigation of the most suitable algorithms is presented with the corresponding hybrid setups. Then simulations on a computer are performed in order to compare the quality of iterative restoration methods with more classical Wiener filtering.

[1]  P. H. Cittert Zum Einfluß der Spaltbreite auf die Intensitätsverteilung in Spektrallinien. II , 1930 .

[2]  B. R. Frieden Image enhancement and restoration , 1979 .

[3]  P. Jansson Method for Determining the Response Function of a High-Resolution Infrared Spectrometer* , 1970 .

[4]  Harry C. Andrews,et al.  Least Squares Image Restoration Using Spline Basis Functions , 1977, IEEE Transactions on Computers.

[5]  Alston S. Householder,et al.  On certain iterative methods for solving linear systems , 1960 .

[6]  G. Häusler,et al.  Hybrid image processing with feedback , 1977 .

[7]  A. Lent,et al.  ART: Mathematics and applications a report on the mathematical foundations and on the applicability to real data of the algebraic reconstruction techniques , 1973 .

[8]  G Häusler,et al.  Television-optical operational amplifier. , 1979, Applied optics.

[9]  J. Kuntzmann,et al.  Solutions Numeriques des Equations Algebriques , 1963 .

[10]  P. Gilbert Iterative methods for the three-dimensional reconstruction of an object from projections. , 1972, Journal of theoretical biology.

[11]  G. Häusler,et al.  Generation of Space and Time Picture Oscillations by Active Incoherent Feedback , 1978 .

[12]  P. Jansson,et al.  Resolution Enhancement of Spectra , 1970 .

[13]  T Sato,et al.  Image processing system using incoherent image feedback. , 1978, Applied optics.

[14]  G. Ferrano,et al.  TV Optical Feedback Systems , 1980 .

[15]  B. R. Hunt,et al.  Digital Image Restoration , 1977 .

[16]  M. Stein Gradient methods in the solution of systems of linear equations , 1952 .

[17]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[18]  T S Huang,et al.  Iterative image restoration. , 1975, Applied optics.

[19]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[20]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[21]  G. Häusler,et al.  HYBRID IMAGE PROCESSING , 1977 .

[22]  A. W. Lohmann Suggestions for hybrid image processing , 1977 .

[23]  William K. Pratt,et al.  Vector Space Formulation of Two-Dimensional Signal Processing Operations , 1975 .

[24]  C. Palma,et al.  An Iterative Method for Restoring Noisy Images , 1978 .

[25]  Azriel Rosenfeld,et al.  Two-Stage Template Matching , 1977, IEEE Transactions on Computers.

[26]  Satoshi Kawata,et al.  Hybrid Image Processing for Feature Extraction and Constant Variance Enhancement , 1979 .

[27]  Gabor T. Herman,et al.  Quadratic optimization for image reconstruction, II , 1976 .

[28]  Alston S. Householder,et al.  The Theory of Matrices in Numerical Analysis , 1964 .

[29]  G. Herman,et al.  Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. , 1970, Journal of theoretical biology.

[30]  D. Faddeev,et al.  Computational Methods of Linear Algebra , 1959 .

[31]  B. Wendroff Theoretical Numerical Analysis , 1966 .

[32]  R. Bracewell Strip Integration in Radio Astronomy , 1956 .