A posterior error estimator and lower bound of a nonconforming finite element method
暂无分享,去创建一个
[1] Hai Bi,et al. Lower spectral bounds by Wilson's brick discretization , 2010 .
[2] Zhimin Zhang,et al. Eigenvalue approximation from below using non-conforming finite elements , 2010 .
[3] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[4] M. Rivara. Mesh Refinement Processes Based on the Generalized Bisection of Simplices , 1984 .
[5] Zhimin Zhang,et al. International Journal of C 2009 Institute for Scientific Numerical Analysis and Modeling Computing and Information N -simplex Crouzeix-raviart Element for the Second-order Elliptic/eigenvalue Problems , 2022 .
[6] Carsten Carstensen,et al. A posteriori error estimates for nonconforming finite element methods , 2002, Numerische Mathematik.
[7] Youai Li,et al. A posteriori error analysis of nonconforming methods for the eigenvalue problem , 2009, J. Syst. Sci. Complex..
[8] Lin Qun,et al. Stokes Eigenvalue Approximations from Below with Nonconforming Mixed Finite Element Methods , 2010 .
[9] I. Babuska,et al. Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .
[10] Hehu Xie,et al. Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations , 2013, Applications of Mathematics.
[11] Yidu Yang,et al. Nonconforming finite element approximations of the Steklov eigenvalue problem , 2009 .
[12] María Cecilia Rivara,et al. Design and data structure of fully adaptive, multigrid, finite-element software , 1984, ACM Trans. Math. Softw..
[13] Ricardo G. Durán,et al. A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems , 2003 .
[14] William F. Mitchell,et al. A comparison of adaptive refinement techniques for elliptic problems , 1989, TOMS.
[15] R. Durán,et al. Error estimators for nonconforming finite element approximations of the Stokes problem , 1995 .
[16] Xie He-hu. The Asymptotic Lower Bounds of Eigenvalue Problems by Nonconforming Finite Element Methods , 2012 .
[17] Ricardo G. Durán,et al. A posteriori error estimates for non-conforming approximation of eigenvalue problems , 2012 .
[18] Rolf Stenberg,et al. A posteriori estimates for the Stokes eigenvalue problem , 2009 .
[19] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[20] Jun Hu,et al. The Lower Bounds for Eigenvalues of Elliptic Operators --By Nonconforming Finite Element Methods , 2011, 1112.1145.
[21] E. G. Sewell,et al. Automatic generation of triangulations for piecewise polynomial approximation , 1972 .
[22] Hehu Xie,et al. Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods , 2011, 1109.5977.
[23] Anahí Dello Russo,et al. A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems , 2011, Comput. Math. Appl..
[24] P. Clément. Approximation by finite element functions using local regularization , 1975 .
[25] Yidu Yang,et al. The order-preserving convergence for spectral approximation of self-adjoint completely continuous operators , 2008 .
[26] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[27] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[28] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.