A posterior error estimator and lower bound of a nonconforming finite element method

In this paper, we present an a posteriori error estimator and the lower bound for a nonconforming finite element approximation, i.e. the extended Crouzeix-Raviart element, of the Laplace eigenvalue problem. Under the guideline of the analysis to the Laplace source problem, we first give out an error indicator and prove it as the global upper and local lower bounds of the approximation error. We also give the lower-bound analysis for this type of nonconforming element on the adaptive meshes. Some numerical experiments are presented to verify our theoretical results.

[1]  Hai Bi,et al.  Lower spectral bounds by Wilson's brick discretization , 2010 .

[2]  Zhimin Zhang,et al.  Eigenvalue approximation from below using non-conforming finite elements , 2010 .

[3]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[4]  M. Rivara Mesh Refinement Processes Based on the Generalized Bisection of Simplices , 1984 .

[5]  Zhimin Zhang,et al.  International Journal of C 2009 Institute for Scientific Numerical Analysis and Modeling Computing and Information N -simplex Crouzeix-raviart Element for the Second-order Elliptic/eigenvalue Problems , 2022 .

[6]  Carsten Carstensen,et al.  A posteriori error estimates for nonconforming finite element methods , 2002, Numerische Mathematik.

[7]  Youai Li,et al.  A posteriori error analysis of nonconforming methods for the eigenvalue problem , 2009, J. Syst. Sci. Complex..

[8]  Lin Qun,et al.  Stokes Eigenvalue Approximations from Below with Nonconforming Mixed Finite Element Methods , 2010 .

[9]  I. Babuska,et al.  Finite element-galerkin approximation of the eigenvalues and Eigenvectors of selfadjoint problems , 1989 .

[10]  Hehu Xie,et al.  Nonconforming finite element approximations of the Steklov eigenvalue problem and its lower bound approximations , 2013, Applications of Mathematics.

[11]  Yidu Yang,et al.  Nonconforming finite element approximations of the Steklov eigenvalue problem , 2009 .

[12]  María Cecilia Rivara,et al.  Design and data structure of fully adaptive, multigrid, finite-element software , 1984, ACM Trans. Math. Softw..

[13]  Ricardo G. Durán,et al.  A Posteriori Error Estimates for the Finite Element Approximation of Eigenvalue Problems , 2003 .

[14]  William F. Mitchell,et al.  A comparison of adaptive refinement techniques for elliptic problems , 1989, TOMS.

[15]  R. Durán,et al.  Error estimators for nonconforming finite element approximations of the Stokes problem , 1995 .

[16]  Xie He-hu The Asymptotic Lower Bounds of Eigenvalue Problems by Nonconforming Finite Element Methods , 2012 .

[17]  Ricardo G. Durán,et al.  A posteriori error estimates for non-conforming approximation of eigenvalue problems , 2012 .

[18]  Rolf Stenberg,et al.  A posteriori estimates for the Stokes eigenvalue problem , 2009 .

[19]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[20]  Jun Hu,et al.  The Lower Bounds for Eigenvalues of Elliptic Operators --By Nonconforming Finite Element Methods , 2011, 1112.1145.

[21]  E. G. Sewell,et al.  Automatic generation of triangulations for piecewise polynomial approximation , 1972 .

[22]  Hehu Xie,et al.  Computing the lower and upper bounds of Laplace eigenvalue problem: by combining conforming and nonconforming finite element methods , 2011, 1109.5977.

[23]  Anahí Dello Russo,et al.  A posteriori error estimates for nonconforming approximations of Steklov eigenvalue problems , 2011, Comput. Math. Appl..

[24]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[25]  Yidu Yang,et al.  The order-preserving convergence for spectral approximation of self-adjoint completely continuous operators , 2008 .

[26]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[27]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[28]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.