Can a Machine Correct Option Pricing Models?

We introduce a novel approach to capture implied volatility smiles. Given any parametric option pricing model used to fit a smile, we train a deep feedforward neural network on the model's orthogonal residuals to correct for potential mispricings and boost performance. Using a large number of recent S&P500 options, we compare our hybrid machine-corrected model to several standalone parametric models ranging from ad-hoc corrections of Black-Scholes to more structural no-arbitrage stochastic volatility models. Empirical results based on out-of-sample fitting errors - in cross-sectional and time-series dimensions - consistently demonstrate that a machine can in fact correct existing models without overfitting. Moreover, we find that our two-step technique is relatively indiscriminate: regardless of the bias or structure of the original parametric model, our boosting approach is able to correct it to approximately the same degree. Hence, our methodology is adaptable and versatile in its application to a large range of parametric option pricing models. As an overarching theme, machine corrected methods, guided by an implied volatility model as a template, outperform pure machine learning methods.

[1]  Andrew J. Patton,et al.  Better the Devil You Know: Improved Forecasts from Imperfect Models , 2021, Social Science Research Network.

[2]  J. Ruf,et al.  Hedging With Linear Regressions and Neural Networks , 2020, Journal of Business & Economic Statistics.

[3]  Cong Ma,et al.  A Selective Overview of Deep Learning , 2019, Statistical science : a review journal of the Institute of Mathematical Statistics.

[4]  Nicola Fusari,et al.  Structural Stochastic Volatility , 2020, SSRN Electronic Journal.

[5]  Runze Li,et al.  Statistical Foundations of Data Science , 2020 .

[6]  Thibault Vatter,et al.  Deep Smoothing of the Implied Volatility Surface , 2019, NeurIPS.

[7]  Yacine Ait-Sahalia,et al.  Implied Stochastic Volatility Models , 2019, The Review of Financial Studies.

[8]  Sander M. Bohte,et al.  Pricing options and computing implied volatilities using neural networks , 2019, Risks.

[9]  J. Teichmann,et al.  Deep hedging , 2018, Quantitative Finance.

[10]  Aaron J. Fisher,et al.  All Models are Wrong, but Many are Useful: Learning a Variable's Importance by Studying an Entire Class of Prediction Models Simultaneously , 2018, J. Mach. Learn. Res..

[11]  Bryan T. Kelly,et al.  Empirical Asset Pricing Via Machine Learning , 2018, The Review of Financial Studies.

[12]  D. Wu,et al.  Curve-Fitting Method for Implied Volatility , 2018, The Journal of Derivatives.

[13]  Lorenzo Rosasco,et al.  Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review , 2016, International Journal of Automation and Computing.

[14]  Markus Ludwig,et al.  Robust Estimation of Shape-Constrained State Price Density Surfaces , 2012, The Journal of Derivatives.

[15]  T. Andersen,et al.  The Risk Premia Embedded in Index Options , 2015 .

[16]  T. Bollerslev,et al.  Tail risk premia and return predictability , 2014 .

[17]  S. Davis,et al.  Measuring Economic Policy Uncertainty , 2013 .

[18]  Jim Gatheral,et al.  Arbitrage-free SVI volatility surfaces , 2012, 1204.0646.

[19]  P. Carr,et al.  A PDE approach to jump-diffusions , 2010 .

[20]  P. Carr,et al.  Analyzing Volatility Risk and Risk Premium in Option Contracts: A New Theory , 2010 .

[21]  Spiros H. Martzoukos,et al.  Generalized parameter functions for option pricing. , 2010 .

[22]  Yoshua Bengio,et al.  Incorporating Functional Knowledge in Neural Networks , 2009, J. Mach. Learn. Res..

[23]  Jianqing Fan,et al.  Option Pricing With Model-Guided Nonparametric Methods , 2009 .

[24]  Cornelis W. Oosterlee,et al.  A Novel Pricing Method for European Options Based on Fourier-Cosine Series Expansions , 2008, SIAM J. Sci. Comput..

[25]  Francis X. Diebold,et al.  Real-Time Measurement of Business Conditions , 2007 .

[26]  O. Scaillet,et al.  Approximation and Calibration of Short-Term Implied Volatilities Under Jump-Diffusion Stochastic Volatility , 2006 .

[27]  Julia A. Bennell,et al.  Black-Scholes Versus Artificial Neural Networks in Pricing Ftse 100 Options , 2003, Intell. Syst. Account. Finance Manag..

[28]  Massimo Guidolin,et al.  Predictable Dynamics in the S&P 500 Index Options Implied Volatility Surface , 2004 .

[29]  Henrik Amilon A neural network versus Black-Scholes: a comparison of pricing and hedging performances , 2003 .

[30]  Yacine Ait-Sahalia,et al.  Nonparametric Option Pricing Under Shape Restrictions , 2002 .

[31]  Jun Pan The jump-risk premia implicit in options: evidence from an integrated time-series study $ , 2002 .

[32]  Massimo Guidolin,et al.  Option Prices Under Bayesian Learning: Implied Volatility Dynamics and Predictive Densities , 2001 .

[33]  Yoshua Bengio,et al.  Pricing and Hedging Derivative Securities with Neural Networks and a Homogeneity Hint , 2000 .

[34]  A. Ullah,et al.  Asymptotic Normality of a Combined Regression Estimator , 1999 .

[35]  Ingrid K. Glad,et al.  Parametrically Guided Non‐parametric Regression , 1998 .

[36]  A. Lo,et al.  Nonparametric Estimation of State‐Price Densities Implicit in Financial Asset Prices , 1998 .

[37]  Gurdip Bakshi,et al.  Empirical Performance of Alternative Option Pricing Models , 1997 .

[38]  M. Stutzer A Simple Nonparametric Approach to Derivative Security Valuation , 1996 .

[39]  M. Rubinstein.,et al.  Recovering Probability Distributions from Option Prices , 1996 .

[40]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[41]  Jeff Fleming,et al.  Implied volatility functions: empirical tests , 1996, IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr).

[42]  Andrew W. Lo,et al.  Nonparametric estimation of state-price densities implicit in financial asset prices , 1995, Proceedings of 1995 Conference on Computational Intelligence for Financial Engineering (CIFEr).

[43]  M. Rubinstein. Implied Binomial Trees , 1994 .

[44]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[45]  Aamir M. Sheikh Stock Splits, Volatility Increases, and Implied Volatilities , 1989 .

[46]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[47]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[48]  Kuldeep Shastri,et al.  An Empirical Test of a Valuation Model for American Options on Futures Contracts , 1986, Journal of Financial and Quantitative Analysis.

[49]  D. Rumelhart Learning Internal Representations by Error Propagation, Parallel Distributed Processing , 1986 .

[50]  M. Rubinstein. Nonparametric tests of alternative option pricing models using all reported trades and quotes on the , 1985 .

[51]  Douglas T. Breeden,et al.  Prices of State-Contingent Claims Implicit in Option Prices , 1978 .

[52]  S. Ross Options and Efficiency , 1976 .

[53]  S. Ross,et al.  The valuation of options for alternative stochastic processes , 1976 .

[54]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.