Yellow AlGaInP/InGaP laser diodes achieved by pressure and temperature tuning

The emission wavelength of broad-area AlGaInP/InGaP quantum-well lasers is tuned by the application of high hydrostatic pressure and low temperature from 645 down to 575 nm, i.e., from the red through the orange to yellow spectral range. Emission powers up to 300 mW are obtained in the full tuning range. The pressure and temperature dependence of threshold currents indicates that leakage occurs into the L and X minima in the barriers.

[1]  William Paul,et al.  High Pressure Semiconductor Physics , 2015 .

[2]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[3]  J. Folk,et al.  Direct and feeder vessel photocoagulation of retinal angiomas with dye yellow laser. , 1990, Ophthalmology.

[4]  Karl Woodbridge,et al.  Influence of the barriers on the temperature dependence of threshold current in GaAs/AlGaAs quantum well lasers , 1989 .

[5]  Taek Kim,et al.  7W high-efficiency continuous-wave green light generation by intracavity frequency doubling of an end-pumped vertical external-cavity surface emitting semiconductor laser , 2006 .

[6]  C. Menoni,et al.  Optical properties of semiconductor lasers with hydrostatic pressure , 1993 .

[7]  A. Sa’ar,et al.  Microampere threshold current operation of GaAs and strained InGaAs quantum well lasers at low temperatures (5 K) , 1991 .

[8]  P. Adamiec,et al.  Effect of pressure and temperature on AlGaInP and AlGaAs laser diodes , 2003, SPIE OPTO.

[9]  S. Lorch,et al.  Orange-emitting frequency-doubled GaAsSb/GaAs semiconductor disk laser , 2003 .

[10]  S. Adachi,et al.  Ellipsometric and thermoreflectance spectra of (AlxGa1−x)0.5In0.5P alloys , 1996 .

[11]  R L Byer,et al.  42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate. , 1997, Optics letters.

[12]  W. Trzeciakowski,et al.  Pressure and temperature tuning of laser diodes , 2007 .

[13]  David J. Dunstan,et al.  Determination of the band structure of disordered AlGaInP and its influence on visible-laser characteristics , 1995 .

[14]  H. Page,et al.  Carrier Leakage Effects in GaAsP/AlGaAs Single‐Quantum‐Well Lasers Determined by Hydrostatic Pressure Measurements , 1999 .

[15]  W. Trzeciakowski,et al.  Pressure-tuned InGaAsSb/AlGaAsSb diode laser with 700 nm tuning range , 2004 .

[16]  Breakdown of thermionic emission theory for quantum wells , 1994 .

[17]  E. O’Reilly,et al.  Important loss mechanisms in visible lasers revealed by hydrostatic pressure , 1993 .

[18]  Randall S. Geels,et al.  Drift leakage current in AlGaInP quantum-well lasers , 1993 .

[19]  P. Smowton,et al.  S-shaped negative differential resistance in 650 nm quantum well laser diodes , 2001 .

[20]  E. O’Reilly,et al.  High pressure determination of AlGaInP band structure , 1995 .

[21]  Robert J. Lang,et al.  Visible laser sources based on frequency doubling in nonlinear waveguides , 1997 .

[22]  A. Adams,et al.  Chapter 5 – Semiconductor Optoelectronic Devices , 1998 .