Nuclear imaging of the fuel assembly in ignition experimentsa)

First results from the analysis of neutron image data collected on implosions of cryogenically layered deuterium-tritium capsules during the 2011-2012 National Ignition Campaign are reported. The data span a variety of experimental designs aimed at increasing the stagnation pressure of the central hotspot and areal density of the surrounding fuel assembly. Images of neutrons produced by deuterium–tritium fusion reactions in the hotspot are presented, as well as images of neutrons that scatter in the surrounding dense fuel assembly. The image data are compared with 1D and 2D model predictions, and consistency checked using other diagnostic data. The results indicate that the size of the fusing hotspot is consistent with the model predictions, as well as other imaging data, while the overall size of the fuel assembly, inferred from the scattered neutron images, is systematically smaller than models' prediction. Preliminary studies indicate these differences are consistent with a significant fraction (20%–25%) of the initial deuterium-tritium fuel mass outside the compact fuel assembly, due either to low mode mass asymmetry or high mode 3D mix effects at the ablator-ice interface.

R. B. Ehrlich | E. S. Palma | T. C. Sangster | Gilbert W. Collins | P. Michel | L. Divol | J. Moody | R. Kirkwood | O. Landen | B. MacGowan | E. Dewald | N. Meezan | D. Clark | P. Bell | J. Holder | J. Kilkenny | S. Burkhart | D. Kalantar | R. Lowe-Webb | J. Koch | A. MacPhee | R. Tommasini | K. Hahn | G. Chandler | G. Cooper | C. Ruiz | L. Atherton | E. Bond | D. Callahan | S. Dixit | E. Dzenitis | M. Edwards | C. Haynam | D. Hinkel | O. Jones | J. Milovich | Marilyn B. Schneider | C. Thomas | R. Town | S. Weber | K. Widmann | S. Glenzer | L. Suter | J. Kline | G. Kyrala | A. Nikroo | J. Knauer | J. Frenje | R. Petrasso | F. Séguin | R. Betti | T. Parham | G. Morgan | P. Wegner | M. Bowers | G. Erbert | M. Hermann | K. Jancaitis | C. Marshall | E. Moses | C. Orth | R. Patterson | M. Shaw | C. Widmayer | P. Whitman | R. Zacharias | C. Cerjan | R. Olson | D. Eder | R. Kauffman | L. Lagin | A. Hamza | P. Volegov | B. Spears | T. Boehly | P. McKenty | C. Stoeckl | S. Regan | D. Munro | S. Haan | J. Kimbrough | B. Young | D. Fittinghoff | V. Glebov | E. Giraldez | N. Izumi | H. Robey | D. Casey | S. Hatchett | D. Wilson | R. Leeper | D. Edgell | P. Celliers | D. Hicks | J. Lindl | P. Datte | K. Krauter | R. Wallace | K. Knittel | G. Frieders | G. Ross | D. Bradley | M. Eckart | S. Glenn | R. Prasad | A. Mackinnon | P. Springer | B. Hammel | J. Salmonson | K. Moreno | J. Ralph | J. Kroll | J. Horner | S. Bhandarkar | C. Gibson | J. Eggert | W. Hsing | G. Grim | E. Alger | R. Berger | L. Bernstein | D. Bleuel | R. F. Burr | J. Caggiano | C. Castro | C. Choate | R. Dylla‐Spears | D. Farley | J. Fair | S. Friedrich | N. Guler | H. Huang | T. Kohut | A. Kritcher | K. Fortune | D. Larson | D. LaTray | T. Ma | J. Mcnaney | T. Malsbury | E. Mapoles | F. Merrill | A. Moore | M. Moran | B. Nathan | A. Pak | H. Rinderknecht | R. Saunders | J. Sater | W. Stoeffl | S. Weaver | C. Wilde | L. Benedetti | A. Nelson | M. Barrios | E. Hartouni | J. D. Nicola | P. D. Nicola | G. Brunton | S. Khan | R. Bionta | S. Lepape | B. Kozioziemski | S. Batha | A. Zylstra | K. Raman | P. Arnold | L. Berzins | S. Cohen | J. Cox | B. Felker | G. Gururangan | G. W. Krauter | D. Mathisen | M. Jackson | H. Herrmann | D. Schneider | M. Gatu-Johnson | D. Holunga | G. LaCaille | R. Hatarik | R. Ashabranner | R. Malone | B. Wonterghem | R. Ehrlich | O. Drury | C. Danly | R. Buckles | J. Cradick | R. Fortner | M. Kauffman | T. Land | T. Lewis | P. Patel | N. Simanovskaia | A. Traille | R. Wood | S. Khan | H. Huang | J. Kroll | T. Sangster | M. Schneider | R. Burr | S. Khan

[1]  Peter M. Celliers,et al.  Capsule implosion optimization during the indirect-drive National Ignition Campaign , 2010 .

[2]  P L Volegov,et al.  The neutron imaging diagnostic at NIF (invited). , 2012, The Review of scientific instruments.

[3]  Paul T. Springer,et al.  Integrated diagnostic analysis of inertial confinement fusion capsule performancea) , 2013 .

[4]  Gilbert W. Collins,et al.  Convergent ablator performance measurements , 2010 .

[5]  E. T. Alger,et al.  Cryogenic thermonuclear fuel implosions on the National Ignition Facility , 2012 .

[6]  David C. Eder,et al.  Development of Nuclear Diagnostics for the National Ignition Facility (invited) , 2006 .

[7]  E. R. Podolyak,et al.  Programs for signal recovery from noisy data using the maximum likelihood principle I. General description , 1993 .

[8]  K. G. Krauter,et al.  Shock Timing experiments on the National Ignition Facility , 2011 .

[9]  L. J. Atherton,et al.  The experimental plan for cryogenic layered target implosions on the National Ignition Facility--The inertial confinement approach to fusion , 2011 .

[10]  L A Bernstein,et al.  Neutron activation diagnostics at the National Ignition Facility (invited). , 2012, The Review of scientific instruments.

[11]  Peter Pazuchanics,et al.  The National Ignition Facility neutron imaging system. , 2008, The Review of scientific instruments.

[12]  C R Danly,et al.  Simultaneous usage of pinhole and penumbral apertures for imaging small scale neutron sources from inertial confinement fusion experiments. , 2012, The Review of scientific instruments.

[13]  L. J. Atherton,et al.  A high-resolution integrated model of the National Ignition Campaign cryogenic layered experimentsa) , 2012 .

[14]  Charles E. Metz,et al.  On The Multiplex Advantage Of Coded Source/Aperture Photon Imaging , 1981, Other Conferences.

[15]  Neal R. Pederson,et al.  Gated x-ray detector for the National Ignition Facility , 2006 .

[16]  Jose Milovich,et al.  Detailed implosion modeling of deuterium-tritium layered experiments on the National Ignition Facilitya) , 2013 .

[17]  R. B. Ehrlich,et al.  Assembly of high-areal-density deuterium-tritium fuel from indirectly driven cryogenic implosions. , 2012, Physical review letters.

[18]  L. Shepp,et al.  Maximum Likelihood Reconstruction for Emission Tomography , 1983, IEEE Transactions on Medical Imaging.

[19]  H. Bosch,et al.  ERRATUM: Improved formulas for fusion cross-sections and thermal reactivities , 1992 .

[20]  C Cerjan,et al.  Failure Modes and Diagnostic Signatures Working Group - Ignition Diagnostics Requirements Update , 2007 .

[21]  M J Moran,et al.  Neutron spectrometry--an essential tool for diagnosing implosions at the National Ignition Facility (invited). , 2012, The Review of scientific instruments.

[22]  Mark D. Wilke,et al.  Goals for and design of a neutron pinhole imaging system for ignition capsules , 2003 .

[23]  D. Clark,et al.  Modeling the National Ignition Facility neutron imaging system. , 2010, The Review of scientific instruments.

[24]  J. M. Mack,et al.  Diagnosing inertial confinement fusion gamma ray physics (invited). , 2010, The Review of scientific instruments.

[25]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[26]  P Bell,et al.  A hardened gated x-ray imaging diagnostic for inertial confinement fusion experiments at the National Ignition Facility. , 2010, The Review of scientific instruments.

[27]  L. J. Atherton,et al.  The velocity campaign for ignition on NIFa) , 2012 .

[28]  N. M. Larson,et al.  ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data , 2011 .

[29]  R Tommasini,et al.  Imaging of high-energy x-ray emission from cryogenic thermonuclear fuel implosions on the NIF. , 2012, The Review of scientific instruments.

[30]  Jeffrey A. Koch,et al.  Neutron imaging at the NIF , 2006 .

[31]  L. J. Atherton,et al.  Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility , 2010 .