Flip-flop-induced relaxation of bending energy: implications for membrane remodeling.

[1]  A. Tian,et al.  Sorting of lipids and proteins in membrane curvature gradients. , 2009, Biophysical journal.

[2]  A. Callan-Jones,et al.  Curvature-driven lipid sorting needs proximity to a demixing point and is aided by proteins , 2009, Proceedings of the National Academy of Sciences.

[3]  T. Taniguchi,et al.  Shape deformation of ternary vesicles coupled with phase separation. , 2008, Physical review letters.

[4]  K. Kremer,et al.  Aggregation and vesiculation of membrane proteins by curvature-mediated interactions , 2007, Nature.

[5]  P. De Camilli,et al.  A Selective Activity-Dependent Requirement for Dynamin 1 in Synaptic Vesicle Endocytosis , 2007, Science.

[6]  Xinran Liu,et al.  Cholesterol‐dependent balance between evoked and spontaneous synaptic vesicle recycling , 2007, The Journal of physiology.

[7]  Helmut Grubmüller,et al.  Molecular Anatomy of a Trafficking Organelle , 2006, Cell.

[8]  P. Camilli,et al.  GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission , 2006, Nature.

[9]  S. Hell,et al.  STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis , 2006, Nature.

[10]  A. Rowat,et al.  Universal behavior of membranes with sterols. , 2006, Biophysical journal.

[11]  I. Bertini,et al.  NMR Spectroscopy of Paramagnetic Metalloproteins , 2005, Chembiochem : a European journal of chemical biology.

[12]  Petra Schwille,et al.  Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Irene A. Chen,et al.  The Emergence of Competition Between Model Protocells , 2004, Science.

[14]  J. Szostak,et al.  Membrane growth can generate a transmembrane pH gradient in fatty acid vesicles. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Martin M. Hanczyc,et al.  Experimental Models of Primitive Cellular Compartments: Encapsulation, Growth, and Division , 2003, Science.

[16]  P. Kinnunen,et al.  Comparison of the effects of surface tension and osmotic pressure on the interfacial hydration of a fluid phospholipid bilayer. , 2003, Biophysical journal.

[17]  Yonathan Kozlovsky,et al.  Membrane fission: model for intermediate structures. , 2003, Biophysical journal.

[18]  R. Tsien,et al.  Single synaptic vesicles fusing transiently and successively without loss of identity , 2003, Nature.

[19]  J. Hamilton Fast flip-flop of cholesterol and fatty acids in membranes: implications for membrane transport proteins. , 2003, Current opinion in lipidology.

[20]  Ham Fast flip-flop of cholesterol and fatty acids in membranes: implications for membrane transport proteins , 2003 .

[21]  T. Steck,et al.  Probing red cell membrane cholesterol movement with cyclodextrin. , 2002, Biophysical journal.

[22]  David Zenisek,et al.  A Membrane Marker Leaves Synaptic Vesicles in Milliseconds after Exocytosis in Retinal Bipolar Cells , 2002, Neuron.

[23]  D. Siegel,et al.  Filling potholes on the path to fusion pores. , 2002, Biophysical journal.

[24]  V. Markin,et al.  Membrane fusion: stalk model revisited. , 2002, Biophysical journal.

[25]  R. Epand,et al.  Regulation of CTP: phosphocholine cytidylyltransferase activity by the physical properties of lipid membranes: an important role for stored curvature strain energy. , 2001, Biochemistry.

[26]  S. Schmid,et al.  Dynamin:Gtp Controls the Formation of Constricted Coated Pits, the Rate Limiting Step in Clathrin-Mediated Endocytosis , 2000, The Journal of cell biology.

[27]  K Kobylarz,et al.  Acute cholesterol depletion inhibits clathrin-coated pit budding. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[28]  B. Deurs,et al.  Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. , 1999, Molecular biology of the cell.

[29]  D. Mitov,et al.  Bending elasticities of model membranes: influences of temperature and sterol content. , 1997, Biophysical journal.

[30]  U. Seifert,et al.  Mapping vesicle shapes into the phase diagram: A comparison of experiment and theory , 1996, cond-mat/9612151.

[31]  N. Fujii,et al.  An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. , 1996, Biochemistry.

[32]  D. Zakim,et al.  Fatty acid flip-flop in phospholipid bilayers is extremely fast. , 1995, Biochemistry.

[33]  Seifert,et al.  Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[34]  B. Seaton,et al.  Effect of vesicle composition and curvature on the dissociation of phosphatidic acid in small unilamellar vesicles--a 31P-NMR study. , 1994, Biochimica et biophysica acta.

[35]  J. Käs,et al.  Budding and fission of vesicles. , 1993, Biophysical journal.

[36]  Stephen A. Langer,et al.  Viscous Modes of Fluid Bilayer Membranes , 1993 .

[37]  Seifert,et al.  Curvature-induced lateral phase segregation in two-component vesicles. , 1993, Physical review letters.

[38]  E Gratton,et al.  Quantitation of lipid phases in phospholipid vesicles by the generalized polarization of Laurdan fluorescence. , 1991, Biophysical journal.

[39]  E Gratton,et al.  Phase fluctuation in phospholipid membranes revealed by Laurdan fluorescence. , 1990, Biophysical journal.

[40]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[41]  P. Canham The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. , 1970, Journal of theoretical biology.

[42]  S. Lowen The Biophysical Journal , 1960, Nature.