Enriching image feature description supporting effective content-based retrieval and annotation

The paper describes a technique that supports efficient and effective Content-Based Image Retrieval (CBIR) in very large image archives as well as automatic image tagging. The proposed technique uses a unified representation for image visual features and for image textual descriptions. Images are clustered according to their image visual features while textual content is used to associate relevant tags to images belonging to the same cluster. The system supports image retrieval based on image query similarity, on textual queries, and on mixed mode queries composed of an image and a textual part and automatic image tagging.

[1]  Wei-Ying Ma,et al.  Hierarchical clustering of WWW image search results using visual, textual and link information , 2004, MULTIMEDIA '04.

[2]  José M. Martínez Standards - MPEG-7 overview of MPEG-7 description tools, part 2 , 2002 .

[3]  Andrea Esuli,et al.  CoPhIR: a Test Collection for Content-Based Image Retrieval , 2009, ArXiv.

[4]  Dragutin Petkovic,et al.  The query by image content (QBIC) system , 1995, SIGMOD '95.

[5]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[6]  José María Martínez Sanchez MPEG-7: Overview of MPEG-7 Description Tools, Part 2 , 2002, IEEE Multim..

[7]  Claudio Gennaro,et al.  MI-File: using inverted files for scalable approximate similarity search , 2012, Multimedia Tools and Applications.

[8]  Tao Qin,et al.  Web image clustering by consistent utilization of visual features and surrounding texts , 2005, MULTIMEDIA '05.

[9]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  John P. Oakley,et al.  Storage and Retrieval for Image and Video Databases , 1993 .

[11]  Thierry Pun,et al.  Content-based query of image databases: inspirations from text retrieval , 2000, Pattern Recognit. Lett..

[12]  Stefan Conrad,et al.  Page segmentation by web content clustering , 2011, WIMS '11.

[13]  Ying Liu,et al.  A survey of content-based image retrieval with high-level semantics , 2007, Pattern Recognit..

[14]  Gonzalo Navarro,et al.  Effective Proximity Retrieval by Ordering Permutations , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Michalis Vazirgiannis,et al.  Clustering validity checking methods: part II , 2002, SGMD.

[16]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[17]  Fernando Pereira,et al.  MPEG-7 the generic multimedia content description standard, part 1 - Multimedia, IEEE , 2001 .

[18]  James Ze Wang,et al.  PARAgrab: a comprehensive architecture for web image management and multimodal querying , 2006, VLDB.

[19]  D.M. Mount,et al.  An Efficient k-Means Clustering Algorithm: Analysis and Implementation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Pasquale Savino,et al.  Multimedia Document Search on the Web , 1998, Comput. Networks.

[21]  Shih-Fu Chang,et al.  VisualSEEk: a fully automated content-based image query system , 1997, MULTIMEDIA '96.

[22]  Amarnath Gupta,et al.  Virage video engine , 1997, Electronic Imaging.

[23]  Claudio Gennaro,et al.  An Approach to Content-Based Image Retrieval Based on the Lucene Search Engine Library , 2010, ECDL.

[24]  Shih-Fu Chang,et al.  Visually Searching the Web for Content , 1997, IEEE Multim..