The Compactness of Belief Revision and Update Operators

A propositional knowledge base can be seen as a compact representation of a set of models. When a knowledge base T is updated with a formula P, the resulting set of models can be represented in two ways: either by a theory T' that is equivalent to TaP or by the pair 〈T,P〉. The second representation can be super-polinomially more compact than the first. In this paper, we prove that the compactness of this representation depends on the specific semantics of a, e.g., Winslett's semantics is more compact than Ginsberg's.

[1]  Kenneth D. Forbus Introducing Actions into Qualitative Simulation , 1989, IJCAI.

[2]  Ken Satoh Nonmonotonic Reasoning by Minimal Belief Revision , 1988, FGCS.

[3]  Mukesh Dalal,et al.  Investigations into a Theory of Knowledge Base Revision , 1988, AAAI.

[4]  Francesco M. Donini,et al.  Feasibility and Unfeasibility of Off-Line Processing , 1996, ISTCS.

[5]  Francesco M. Donini,et al.  Comparing Space Efficiency of Propositional Knowledge Representation Formalisms , 1996, KR.

[6]  Paolo Liberatore Monotonic reductions, representative equivalence, and compilation of intractable problems , 2001, JACM.

[7]  Marco Schaerf,et al.  The Complexity of Model Checking for Belief Revision and Update , 1996, AAAI/IAAI, Vol. 1.

[8]  Francesco M. Donini,et al.  Space Efficiency of Propositional Knowledge Representation Formalisms , 2000, J. Artif. Intell. Res..

[9]  Peter Gärdenfors,et al.  On the logic of theory change: Partial meet contraction and revision functions , 1985, Journal of Symbolic Logic.

[10]  Hirofumi Katsuno,et al.  On the Difference between Updating a Knowledge Base and Revising It , 1991, KR.

[11]  Alexander Borgida,et al.  Language features for flexible handling of exceptions in information systems , 1985, TODS.

[12]  Hirofumi Katsuno,et al.  A Unified View of Propositional Knowledge Base Updates , 1989, IJCAI.

[13]  Ronald Fagin,et al.  On the semantics of updates in databases , 1983, PODS.

[14]  Georg Gottlob,et al.  On the complexity of propositional knowledge base revision, updates, and counterfactuals , 1992, Artif. Intell..

[15]  Gabriel M. Kuper,et al.  Updating Logical Databases , 1986, Adv. Comput. Res..

[16]  Marco Schaerf,et al.  Reducing Belief Revision to Circumscription (and Vice Versa) , 1997, Artif. Intell..

[17]  Larry J. Stockmeyer,et al.  The Polynomial-Time Hierarchy , 1976, Theor. Comput. Sci..

[18]  Hector J. Levesque,et al.  Making Believers out of Computers , 1986, Artif. Intell..

[19]  Bernhard Nebel,et al.  Belief Revision and Default Reasoning: Syntax-Based Approaches , 1991, KR.

[20]  P G rdenfors,et al.  Knowledge in flux: modeling the dynamics of epistemic states , 1988 .

[21]  Francesco M. Donini,et al.  Preprocessing of Intractable Problems , 2002, Inf. Comput..

[22]  Marianne Winslett Sometimes Updates Are Circumscription , 1989, IJCAI.

[23]  Francesco M. Donini,et al.  The Size of a Revised Knowledge Base , 1999, Artif. Intell..

[24]  David S. Johnson,et al.  A Catalog of Complexity Classes , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[25]  Marco Schaerf,et al.  Belief Revision and Update: Complexity of Model Checking , 2001, J. Comput. Syst. Sci..