An Almost m-wise Independent Random Permutation of the Cube

We describe a very simple method of randomly permuting the cube {0, 1}n such that the sample space is very small, but, given any m distinct points in {0, 1}n, the images of those points under the random permutation are approximately uniformly distributed over all sequences of m distinct points.

[1]  Noam Nisan,et al.  Pseudorandomness for network algorithms , 1994, STOC '94.

[2]  Alistair Sinclair,et al.  Improved Bounds for Mixing Rates of Markov Chains and Multicommodity Flow , 1992, Combinatorics, Probability and Computing.

[3]  Noam Nisan,et al.  Pseudorandom generators for space-bounded computation , 1992, Comb..

[4]  Noam Nisan,et al.  Pseudorandom bits for constant depth circuits , 1991, Comb..

[5]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[6]  Noga Alon,et al.  Simple construction of almost k-wise independent random variables , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[7]  Mark Jerrum,et al.  Fast Uniform Generation of Regular Graphs , 1990, Theor. Comput. Sci..

[8]  Noam Nisan,et al.  Approximate Inclusion-Exclusion , 1990, STOC '90.

[9]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[10]  Michael Luby,et al.  How to Construct Pseudo-Random Permutations from Pseudo-Random Functions (Abstract) , 1986, CRYPTO.