Actual and Imagined Movement in BCI Gaming

Most research on Brain-Computer Interfaces (BCI) focuses on developing ways of expression for disabled people who are not able to communicate through other means. Recently it has been shown that BCI can also be used in games to give users a richer experience and new ways to interact with a computer or game console. This paper describes research conducted to find out what the differences are between using actual and imagined movement as modalities in a BCI game. Results show that there are significant differences in user experience and that actual movement is a more robust way of communicating through a BCI.

[1]  Christa Neuper,et al.  Walking from thoughts: Not the muscles are crucial, but the brain waves! , 2005 .

[2]  Desney S. Tan,et al.  Brain-computer interfaces for hci and games , 2008, CHI Extended Abstracts.

[3]  Boris Reuderink,et al.  BrainBasher: a BCI Game , 2008 .

[4]  D. Freedman,et al.  Asymptotic Normality and the Bootstrap in Stratified Sampling , 1984 .

[5]  M. Hallett,et al.  Binary EEG Control for Two-Dimensional Cursor Movement: An Online Approach , 2007, 2007 IEEE/ICME International Conference on Complex Medical Engineering.

[6]  L. Cronbach Coefficient alpha and the internal structure of tests , 1951 .

[7]  Michitaka Hirose,et al.  Brain-Computer Interfaces, Virtual Reality, and Videogames , 2008, Computer.

[8]  J. Wolpaw,et al.  Mu and Beta Rhythm Topographies During Motor Imagery and Actual Movements , 2004, Brain Topography.

[9]  Charlotte Wiberg,et al.  Evaluating user experience and other lies in evaluating games , 2008 .

[10]  Desney S. Tan,et al.  Brain-Computer Interfacing for Intelligent Systems , 2008, IEEE Intelligent Systems.

[11]  R. Bernhaupt,et al.  Characterising and measuring user experiences in digital games , 2007 .

[12]  Bernhard Graimann,et al.  New Applications for Non-invasive Brain-Computer Interfaces and the Need for Engaging Training Environments , 2007 .

[13]  Gabriel Curio,et al.  Quasi-movements: A novel motor–cognitive phenomenon , 2008, Neuropsychologia.

[14]  K.-R. Muller,et al.  Improving speed and accuracy of brain-computer interfaces using readiness potential features , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[15]  Z J Koles,et al.  The quantitative extraction and topographic mapping of the abnormal components in the clinical EEG. , 1991, Electroencephalography and clinical neurophysiology.

[16]  G. Pfurtscheller,et al.  Functional brain imaging based on ERD/ERS , 2001, Vision Research.

[17]  M. Jeannerod The representing brain: Neural correlates of motor intention and imagery , 1994, Behavioral and Brain Sciences.

[18]  José del R. Millán,et al.  Brain-Computer Interfaces , 2020, Handbook of Clinical Neurology.

[19]  R. Cattell,et al.  A Comprehensive Trial Of The Scree And Kg Criteria For Determining The Number Of Factors. , 1977, Multivariate behavioral research.

[20]  H. Kornhuber,et al.  Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale , 1965, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[21]  Howard Rheingold,et al.  Virtual Reality , 1991 .

[22]  G. Pfurtscheller,et al.  Brain–Computer Communication: Motivation, Aim, and Impact of Exploring a Virtual Apartment , 2007, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[23]  J. Pineda,et al.  Learning to control brain rhythms: making a brain-computer interface possible , 2003, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[24]  Brendan Z. Allison,et al.  Brain-Computer Interfaces , 2010 .

[25]  Carl Machover,et al.  Virtual reality , 1994, IEEE Computer Graphics and Applications.

[26]  John L. Arnott,et al.  Interface metaphor design and instant messaging for older adults , 2008, CHI Extended Abstracts.

[27]  J. M. Cortina,et al.  What Is Coefficient Alpha? An Examination of Theory and Applications , 1993 .

[28]  Klaus-Robert Müller,et al.  Estimating Noise and Dimensionality in BCI Data Sets : Towards Illiteracy Comprehension , 2008 .