Rotational behavior of oblate golden nanoparticles in circularly polarized dual beam optical trap

Larger golden nanoparticles grow into several preferred forms. Some of those may be easily approximated by ellipsoids. In this paper we examine the rotational dynamics of spheroidal particles in an optical trap comprising counter-propagating Gaussian beams of opposing helicity. Isolated spheroids undergo continuous rotation with frequencies determined by their size and aspect ratio. We study the rotational frequencies and stability of these golden nano-particles theoretically by the means of T-Matrix.

[1]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[2]  Halina Rubinsztein-Dunlop,et al.  Optical torque on microscopic objects. , 2007, Methods in cell biology.

[3]  J. Kong Scattering of Electromagnetic Waves , 2021, Principles of Scattering and Transport of Light.

[4]  Pavel Zemánek,et al.  Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[5]  Oto Brzobohatý,et al.  The holographic optical micro-manipulation system based on counter-propagating beams , 2010 .

[6]  Simon Hanna,et al.  Optical angular momentum transfer by Laguerre-Gaussian beams. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[7]  F. Perrin,et al.  Mouvement brownien d'un ellipsoide - I. Dispersion diélectrique pour des molécules ellipsoidales , 1934 .

[8]  Cameron Tropea,et al.  Radiation Torque Exerted on a Spheroid: Analytical Solution , 2008 .

[9]  Simon Hanna,et al.  Optical trapping of spheroidal particles in Gaussian beams. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[10]  Monika Ritsch-Marte,et al.  Optical mirror trap with a large field of view. , 2009, Optics express.

[11]  Tomáš Čižmár,et al.  Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination , 2008 .

[12]  P. Snabre,et al.  Optically driven oscillations of ellipsoidal particles. Part I: Experimental observations , 2014, The European physical journal. E, Soft matter.

[13]  Oto Brzobohatý,et al.  Three-Dimensional Optical Trapping of a Plasmonic Nanoparticle using Low Numerical Aperture Optical Tweezers , 2015, Scientific Reports.

[14]  David Sinton,et al.  Optohydrodynamic theory of particles in a dual-beam optical trap , 2008 .

[15]  P. Chaikin,et al.  Light streak tracking of optically trapped thin microdisks. , 2002, Physical review letters.

[16]  Oto Brzobohatý,et al.  Non-spherical gold nanoparticles trapped in optical tweezers: shape matters. , 2015, Optics express.

[17]  M Mazilu,et al.  Dual beam fibre trap for Raman micro-spectroscopy of single cells. , 2006, Optics express.

[18]  Pavel Zemánek,et al.  Optical trapping of Rayleigh particles using a Gaussian standing wave , 1998 .

[19]  Tomáš Čižmár,et al.  A dual beam photonic crystal fiber trap for microscopic particles , 2008 .

[20]  Patrick Snabre,et al.  Radiation pressure makes ellipsoidal particles tumble , 2012 .

[21]  Peter John Rodrigo,et al.  GPC-based optical micromanipulation in 3D real-time using a single spatial light modulator. , 2006, Optics express.

[22]  Oto Brzobohatý,et al.  Complex rotational dynamics of multiple spheroidal particles in a circularly polarized, dual beam trap. , 2015, Optics express.

[23]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[24]  Feng Xu,et al.  Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  S. Simpson Inhomogeneous and anisotropic particles in optical traps: Physical behaviour and applications , 2014 .

[26]  Tomáš Čižmár,et al.  Optical conveyor belt for delivery of submicron objects , 2005 .

[27]  J. Anders,et al.  Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere. , 2013, Nature nanotechnology.

[28]  Evgenii Mikhailovich Lifshitz,et al.  SCATTERING OF ELECTROMAGNETIC WAVES , 1984 .

[29]  Pavel Zemánek,et al.  Parametric study of optical forces acting upon nanoparticles in a single, or a standing, evanescent wave , 2011 .

[30]  Pavel Zemánek,et al.  Rotation, oscillation and hydrodynamic synchronization of optically trapped oblate spheroidal microparticles. , 2014, Optics express.

[31]  F. Perrin,et al.  Mouvement Brownien d'un ellipsoide (II). Rotation libre et dépolarisation des fluorescences. Translation et diffusion de molécules ellipsoidales , 1936 .

[32]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[33]  Simon Hanna,et al.  Computational study of the optical trapping of ellipsoidal particles , 2011 .

[34]  M. Nobili,et al.  Brownian Motion of an Ellipsoid , 2006, Science.

[35]  M. Šiler,et al.  An optical nanotrap array movable over a milimetre range , 2006 .