Loomis-Sikorski theorem and Stone duality for effect algebras with internal state
暂无分享,去创建一个
Anatolij Dvurecenskij | David Buhagiar | Emmanuel Chetcuti | A. Dvurecenskij | D. Buhagiar | E. Chetcuti
[1] On the representation of $\sigma$-complete Boolean algebras , 1947 .
[2] Anatolij Dvurečenskij,et al. Loomis-sikorski theorem for σ-complete MV-algebras and ℓ-groups , 2000, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[3] Endre Pap,et al. Handbook of measure theory , 2002 .
[4] Anatolij Dvurecenskij,et al. State-morphism MV-algebras , 2009, Ann. Pure Appl. Log..
[5] A. Dvurecenskij,et al. Stone Duality Type Theorems for MV-Algebras with Internal State , 2010, 1006.1960.
[6] J. D. Maitland Wright. On Approximating Concave Functions by Convex Functions , 1973 .
[7] David Buhagiar,et al. Loomis-Sikorski representation of monotone sigma-complete effect algebras , 2006, Fuzzy Sets Syst..
[8] Majid Alizadeh,et al. Boolean Algebras , 2022, Set Theory and Foundations of Mathematics: An Introduction to Mathematical Logic.
[9] Anatolij Dvurečenskij,et al. Perfect effect algebras are categorically equivalent with Abelian interpolation po-groups , 2007, Journal of the Australian Mathematical Society.
[10] G. Seever. Measures on F-spaces , 1968 .
[11] A. Zaanen. Riesz Spaces, II , 1983 .
[12] D. Mundici. Interpretation of AF -algebras in ukasiewicz sentential calculus , 1986 .
[13] C. C. Chang. On the representation of -complete Boolean algebras , 1957 .
[14] Sylvia Pulmannová,et al. New trends in quantum structures , 2000 .
[15] Franco Montagna,et al. MV-algebras with internal states and probabilistic fuzzy logics , 2009, Int. J. Approx. Reason..
[16] DANIELE MUNDICI,et al. Averaging the truth-value in Łukasiewicz logic , 1995, Stud Logica.
[17] K. Goodearl. Partially ordered abelian groups with interpolation , 1986 .
[18] Anatolij Dvurecenskij,et al. On varieties of MV-algebras with internal states , 2010, Int. J. Approx. Reason..
[19] J. Wright,et al. A Dixmier-Schaefer-Zhang theorem for operator algebras , 1999 .
[20] Hans Weber,et al. CHAPTER 22 – Measures on Clans and on MV-Algebras , 2002 .
[21] D. Foulis,et al. Effect algebras and unsharp quantum logics , 1994 .
[22] R. Goodstein. Boolean algebra , 1963 .
[23] M. Henriksen,et al. Rings of continuous functions in which every finitely generated ideal is principal , 1956 .
[24] M. Stone. The theory of representations for Boolean algebras , 1936 .
[25] E. Alfsen. Compact convex sets and boundary integrals , 1971 .
[26] J. Cooper. Riesz spaces , 2012 .
[27] A. Nola,et al. ON THE LOOMIS–SIKORSKI THEOREM FOR MV-ALGEBRAS WITH INTERNAL STATE , 2010, Journal of the Australian Mathematical Society.