Loomis-Sikorski theorem and Stone duality for effect algebras with internal state

Recently Flaminio and Montagna extended the language of MV-algebras by adding a unary operation, called a state-operator. This notion is introduced here also for effect algebras. Having it, we generalize the Loomis-Sikorski Theorem for monotone @s-complete effect algebras with internal state. In addition, we show that the category of divisible state-morphism effect algebras satisfying (RDP) and countable interpolation with an order determining system of states is dual to the category of Bauer simplices @W such that @?"[email protected] is an F-space.

[1]  On the representation of $\sigma$-complete Boolean algebras , 1947 .

[2]  Anatolij Dvurečenskij,et al.  Loomis-sikorski theorem for σ-complete MV-algebras and ℓ-groups , 2000, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[3]  Endre Pap,et al.  Handbook of measure theory , 2002 .

[4]  Anatolij Dvurecenskij,et al.  State-morphism MV-algebras , 2009, Ann. Pure Appl. Log..

[5]  A. Dvurecenskij,et al.  Stone Duality Type Theorems for MV-Algebras with Internal State , 2010, 1006.1960.

[6]  J. D. Maitland Wright On Approximating Concave Functions by Convex Functions , 1973 .

[7]  David Buhagiar,et al.  Loomis-Sikorski representation of monotone sigma-complete effect algebras , 2006, Fuzzy Sets Syst..

[8]  Majid Alizadeh,et al.  Boolean Algebras , 2022, Set Theory and Foundations of Mathematics: An Introduction to Mathematical Logic.

[9]  Anatolij Dvurečenskij,et al.  Perfect effect algebras are categorically equivalent with Abelian interpolation po-groups , 2007, Journal of the Australian Mathematical Society.

[10]  G. Seever Measures on F-spaces , 1968 .

[11]  A. Zaanen Riesz Spaces, II , 1983 .

[12]  D. Mundici Interpretation of AF -algebras in ukasiewicz sentential calculus , 1986 .

[13]  C. C. Chang On the representation of -complete Boolean algebras , 1957 .

[14]  Sylvia Pulmannová,et al.  New trends in quantum structures , 2000 .

[15]  Franco Montagna,et al.  MV-algebras with internal states and probabilistic fuzzy logics , 2009, Int. J. Approx. Reason..

[16]  DANIELE MUNDICI,et al.  Averaging the truth-value in Łukasiewicz logic , 1995, Stud Logica.

[17]  K. Goodearl Partially ordered abelian groups with interpolation , 1986 .

[18]  Anatolij Dvurecenskij,et al.  On varieties of MV-algebras with internal states , 2010, Int. J. Approx. Reason..

[19]  J. Wright,et al.  A Dixmier-Schaefer-Zhang theorem for operator algebras , 1999 .

[20]  Hans Weber,et al.  CHAPTER 22 – Measures on Clans and on MV-Algebras , 2002 .

[21]  D. Foulis,et al.  Effect algebras and unsharp quantum logics , 1994 .

[22]  R. Goodstein Boolean algebra , 1963 .

[23]  M. Henriksen,et al.  Rings of continuous functions in which every finitely generated ideal is principal , 1956 .

[24]  M. Stone The theory of representations for Boolean algebras , 1936 .

[25]  E. Alfsen Compact convex sets and boundary integrals , 1971 .

[26]  J. Cooper Riesz spaces , 2012 .

[27]  A. Nola,et al.  ON THE LOOMIS–SIKORSKI THEOREM FOR MV-ALGEBRAS WITH INTERNAL STATE , 2010, Journal of the Australian Mathematical Society.