Probabilistic seismic safety analysis of multi-component systems

Fakultät für Bauingenieurwesen Lehrstuhl für Baustatik und Baudynamik Univ.-Prof. Dr.-Ing. habil. Sven Klinkel ISBN 978-3-946090-07-6 ISSN 1437-0840 The present thesis aims at proposing an alternative methodology for the m ulticomponent system analysis capable of representing the interaction among the components. The method is based on the multidimensional fragility formulations, where the component responses are combined using multivariate distributions and the limit states are defined using performance limit state function. The definition of the performance limit state also takes into consideration the interaction among the components, which are not represented using traditional meth ods such as fault tree analysis. A comparison with the fault tree analysis method shows that the interaction among components a re well represented using the multidimensional fragility method. The proposed method uses Response Surface method based meta models for the analysis allowing high computational efficiency compared to that of the Monte Carlo methods. The aging and degradation behavior of the structure and the components can be incorporated in the multidimensional system fragility formulation . Probabilistic Seismic Safety Analysis of Multi-component Systems Von der Fakultät für Bauingenieurwesen der Rheinisch-Westfälischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades einer Doktorin der Ingenieurwissenschaften genehmigte Dissertation

[1]  Paolo Franchin,et al.  Seismic Fragility Analysis of Structural Systems , 2006 .

[2]  John B. Mander,et al.  Fragility Curve Development for Assessing the Seismic Vulnerability of Highway Bridges , 1999 .

[3]  Ragunath Sankaranarayanan,et al.  Seismic Response of Acceleration-sensitive Nonstructural Components Mounted on Moment-resisting Frame Structures , 2007 .

[4]  Anne S. Kiremidjian,et al.  Bayesian Updating of Fragilities with Application to RC Frames , 1998 .

[5]  Michalis Fragiadakis,et al.  Fragility Assessment of Steel Frames Using Neural Networks , 2007 .

[6]  Paola Annoni,et al.  Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index , 2010, Comput. Phys. Commun..

[7]  Jianlin Song,et al.  Seismic Reliability of Special Moment Steel Frames with Welded Connections: I , 1999 .

[8]  Iain Murray Introduction To Gaussian Processes , 2008 .

[9]  C. Birk,et al.  Numerical models for the analysis of soil, structure and their interaction , 2016 .

[10]  W. Wagner,et al.  Ein Finite-Elemente-Modell zur Analyse des Verhaltens von Formgedächtnisfaserkompositen mit beliebiger Mikrostruktur , 2016 .

[11]  Masaki Nakagawa,et al.  Failure Probability of Degraded Pipes Based on Probabilistic Fracture Mechanics for Seismic Safety Margin Assessment on NPP , 2010 .

[12]  Michael Smith,et al.  ABAQUS/Standard User's Manual, Version 6.9 , 2009 .

[13]  Reginald DesRoches,et al.  Methodology for the development of analytical fragility curves for retrofitted bridges , 2008 .

[14]  M. K. Ravindra,et al.  Seismic fragilities for nuclear power plant risk studies , 1984 .

[15]  Xiao Xiao Liu,et al.  Multidimensional performance limit state for probabilistic seismic demand analysis , 2016, Bulletin of Earthquake Engineering.

[16]  Bruce R. Ellingwood Validation studies of seismic PRAs , 1990 .

[17]  I. Zentner Numerical computation of fragility curves for NPP equipment , 2010 .

[18]  Ajit Srividya,et al.  Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment , 2009, Reliab. Eng. Syst. Saf..

[19]  J. Jeřábek,et al.  Numerical framework for modeling of cementitious composites at the meso-scale , 2011 .

[20]  Yonghee Ryu Fragility of Piping Systems and Reliability of Piping Components. , 2013 .

[21]  P. Renault,et al.  Approach and challenges for the seismic hazard assessment of nuclear power plants: the Swiss experience , 2014 .

[22]  Konstantin Meskouris,et al.  Beitrag zum statischen nichtlinearen Erdbebennachweis von unbewehrten Mauerwerksbauten unter Berücksichtigung einer und höherer Modalformen , 2013 .

[23]  Bruce R. Ellingwood,et al.  Seismic fragility assessment of concrete gravity dams , 2003 .

[24]  K. Meskouris,et al.  Gesamtkonzept zur Ermittlung der seismischen Vulnerabilität von Bauwerken am Beispiel unterirdischer Rohrleitungen , 2004 .

[25]  Barbara Pfeffer,et al.  Seismic Design Of Reinforced Concrete And Masonry Buildings , 2016 .

[26]  Junwon Seo,et al.  Use of response surface metamodels to generate system level fragilities for existing curved steel bridges , 2013 .

[27]  Karthik Narayan Ramanathan,et al.  Next generation seismic fragility curves for california bridges incorporating the evolution in seismic design philosophy , 2012 .

[28]  Dimitrios Vamvatsikos,et al.  Incremental dynamic analysis , 2002 .

[29]  Barron J. Bichon,et al.  GAUSSIAN PROCESS RESPONSE SURFACE MODELING AND GLOBAL SENSITIVITY ANALYSIS USING NESSUS , 2017 .

[30]  R. P. Kennedy,et al.  Probabilistic seismic safety study of an existing nuclear power plant , 1980 .

[31]  Amr S. Elnashai,et al.  The effect of material and ground motion uncertainty on the seismic vulnerability curves of RC structure , 2006 .

[32]  A. M. Prasad,et al.  Development of fragility curves using high‐dimensional model representation , 2013 .

[33]  Kevin R. Mackie,et al.  Performance‐based seismic bridge design for damage and loss limit states , 2007 .

[34]  Bruce R. Ellingwood,et al.  Seismic fragility assessment of steel frames for consequence-based engineering: A case study for Memphis, TN , 2007 .

[35]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[36]  Robert E. Melchers,et al.  Structural Reliability: Analysis and Prediction , 1987 .

[37]  Konstantin Meskouris Structural dynamics : models, methods, examples , 2000 .

[38]  Benjamin Richard,et al.  SMART 2013: Lessons learned from the international benchmark about the seismic margin assessment of nuclear RC buildings , 2018 .

[39]  Yiannis Papadopoulos,et al.  Model-based synthesis of fault trees from Matlab-Simulink models , 2001, 2001 International Conference on Dependable Systems and Networks.

[40]  Reinhard Harte,et al.  Numerical Investigation of Soil-Structure Interaction for Onshore Wind Turbines Grounded on a Layered Soil , 2015 .

[41]  Ziyan Wu,et al.  Seismic fragility analysis of highway bridges considering multi-dimensional performance limit state , 2012, Earthquake Engineering and Engineering Vibration.

[42]  Ben H. Thacker,et al.  Probabilistic engineering analysis using the NESSUS software , 2000 .

[43]  Konstantin Meskouris,et al.  Makroelement für unbewehrte Mauerwerkswandscheiben unter Erdbebeneinwirkung , 2013 .

[44]  Muhammad Subekti,et al.  Reliability Analysis of RSG-GAS Primary Cooling System to Support Aging Management Program , 2018 .

[45]  Konstantin Meskouris,et al.  Nichtlinearer Nachweis von unbewehrten Mauerwerksbauten unter Erdbebeneinwirkung , 2011 .

[46]  Prabir C. Basu,et al.  Methods to derive seismic fragility of NPP components: A summary , 2010 .

[47]  Irmela Zentner,et al.  A general framework for the estimation of analytical fragility functions based on multivariate probability distributions , 2017 .

[48]  Anne S. Kiremidjian,et al.  Method for Probabilistic Evaluation of Seismic Structural Damage , 1996 .

[49]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[50]  Mark G. Stewart,et al.  Time-dependent reliability of deteriorating reinforced concrete bridge decks , 1998 .

[51]  Christoph Butenweg,et al.  Fragility curves for a three-storey reinforced concrete test structure of the international benchmark SMART 2013 - 2017 , 2017 .

[52]  Nicola Pedroni,et al.  Seismic fragility analysis with artificial neural networks: Application to nuclear power plant equipment , 2018 .

[53]  D. R. Diercks,et al.  Nuclear power plant Generic Aging Lessons Learned (GALL). Main report and appendix A , 1996 .

[54]  Masanobu Shinozuka,et al.  Nonlinear Static Procedure for Fragility Curve Development , 2000 .

[55]  H Y Kim,et al.  STATISTICAL ANALYSIS OF FRAGILITY CURVES , 2000 .

[56]  D. R. Buttemer,et al.  A methodology for assessment of nuclear power plant seismic margin: Final report , 1988 .

[57]  Irmela Zentner,et al.  Fragility analysis methods: Review of existing approaches and application , 2017 .

[58]  D. Legates,et al.  Evaluating the use of “goodness‐of‐fit” Measures in hydrologic and hydroclimatic model validation , 1999 .

[59]  Konstantin Meskouris,et al.  Numerische Simulation von unbewehrten und textilverstärkten Mauerwerksscheiben unter zyklischer Belastung , 2007 .

[60]  G. Latif-Shabgahi,et al.  A Novel Methodology for Synthesis of Fault Trees from MATLAB-Simulink Model , 2008 .

[61]  Lawrence D. Reaveley,et al.  NEHRP Guidelines and Commentary for the Seismic Rehabilitation of Buildings , 2000 .

[62]  Anne S. Kiremidjian,et al.  Development of time-dependent fragility functions for deteriorating reinforced concrete bridge piers1 , 2017 .

[63]  Peeranan Towashiraporn,et al.  Building Seismic Fragilities Using Response Surface Metamodels , 2004 .

[64]  Mariëlle Stoelinga,et al.  Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools , 2014, Comput. Sci. Rev..

[65]  M. Shahria Alam,et al.  Seismic fragility assessment of highway bridges: a state-of-the-art review , 2015 .

[66]  André I. Khuri,et al.  Response surface methodology , 2010 .

[67]  Stephen J. M. Mildenhall Correlation and Aggregate Loss Distributions With An Emphasis On The Iman-Conover Method , 2005 .

[68]  Roberto Villaverde,et al.  Approximate Procedure for the Seismic Nonlinear Analysis of Nonstructural Components in Buildings , 2005 .

[69]  Konstantin Meskouris,et al.  Risk management of natural disasters : a fuzzy-probabilistic methodology and its application to seismic hazard , 2006 .