Bioconversion of cellulose into bisabolene using Ruminococcus flavefaciens and Rhodosporidium toruloides.

[1]  Laura E. Walls,et al.  Recent advances in fed-batch microscale bioreactor design. , 2021, Biotechnology advances.

[2]  Laura E. Walls,et al.  Enhancing Saccharomyces cerevisiae Taxane Biosynthesis and Overcoming Nutritional Stress-Induced Pseudohyphal Growth , 2022, Microorganisms.

[3]  L. Rios-Solis,et al.  Methane, a renewable biofuel: from organic waste to bioenergy , 2021, Biofuels.

[4]  Xiaoling Ma,et al.  Synthesis of CaO/ZrO2 based catalyst by using UiO–66(Zr) and calcium acetate for biodiesel production , 2021, Renewable Energy.

[5]  Laura E. Walls,et al.  Definitive screening accelerates Taxol biosynthetic pathway optimization and scale up in Saccharomyces cerevisiae cell factories , 2021, Biotechnology journal.

[6]  C. Kennes,et al.  Carbon dioxide bioconversion into single cell oils (lipids) in two reactors inoculated with Acetobacterium woodii and Rhodosporidium toruloides , 2021 .

[7]  Nawa Raj Baral,et al.  Use of ensiled biomass sorghum increases ionic liquid pretreatment efficiency and reduces biofuel production cost and carbon footprint , 2021, Green Chemistry.

[8]  Chentao Lin,et al.  Lipid and carotenoid production by the Rhodosporidium toruloides mutant in cane molasses. , 2021, Bioresource technology.

[9]  S. Khanal,et al.  Understanding the Anaerobic Digestibility of Lignocellulosic Substrates Using Rumen Content as a Cosubstrate and an Inoculum , 2021 .

[10]  Zhongjie Wu,et al.  Current application of MOFs based heterogeneous catalysts in catalyzing transesterification/esterification for biodiesel production: A review , 2021 .

[11]  Kristin E. Burnum-Johnson,et al.  Further engineering of R. toruloides for the production of terpenes from lignocellulosic biomass , 2020, Biotechnology for Biofuels.

[12]  J. Kirby,et al.  Conversion of poplar biomass into high-energy density tricyclic sesquiterpene jet fuel blendstocks , 2020, Microbial Cell Factories.

[13]  Laura E. Walls,et al.  Sustainable Production of Microbial Isoprenoid Derived Advanced Biojet Fuels Using Different Generation Feedstocks: A Review , 2020, Frontiers in Bioengineering and Biotechnology.

[14]  Clara Navarrete,et al.  Cell Factories for Industrial Production Processes: Current Issues and Emerging Solutions , 2020, Processes.

[15]  Laura E. Walls,et al.  Optimizing the biosynthesis of oxygenated and acetylated Taxol precursors in Saccharomyces cerevisiae using advanced bioprocessing strategies , 2020, Biotechnology and bioengineering.

[16]  Jeffrey M. Skerker,et al.  Monoterpene production by the carotenogenic yeast Rhodosporidium toruloides , 2019, Microbial Cell Factories.

[17]  B. Simmons,et al.  Demonstrating a separation-free process coupling ionic liquid pretreatment, saccharification, and fermentation with Rhodosporidium toruloides to produce advanced biofuels , 2018 .

[18]  Georgios A. Pavlopoulos,et al.  Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection , 2018, Nature Biotechnology.

[19]  O. Ince,et al.  Rumen bacteria at work: bioaugmentation strategies to enhance biogas production from cow manure , 2018, Journal of applied microbiology.

[20]  Jia Liu,et al.  Bioconversion of mixed volatile fatty acids into microbial lipids by Cryptococcus curvatus ATCC 20509. , 2017, Bioresource technology.

[21]  Jeffrey M. Skerker,et al.  Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts , 2017, bioRxiv.

[22]  Christopher J. Nachtsheim,et al.  Effective Design-Based Model Selection for Definitive Screening Designs , 2017, Technometrics.

[23]  Jia Liu,et al.  Culture strategies for lipid production using acetic acid as sole carbon source by Rhodosporidium toruloides. , 2016, Bioresource technology.

[24]  E. Mullins,et al.  Fungal-mediated consolidated bioprocessing: the potential of Fusarium oxysporum for the lignocellulosic ethanol industry , 2016, AMB Express.

[25]  P. B. Pope,et al.  Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range , 2015, Scientific Reports.

[26]  Trevor R. Zuroff,et al.  Consortia-mediated bioprocessing of cellulose to ethanol with a symbiotic Clostridium phytofermentans/yeast co-culture , 2013, Biotechnology for Biofuels.

[27]  Jay D. Keasling,et al.  Identification and microbial production of a terpene-based advanced biofuel , 2011, Nature communications.

[28]  P. Weimer,et al.  Lessons from the cow: what the ruminant animal can teach us about consolidated bioprocessing of cellulosic biomass. , 2009, Bioresource technology.

[29]  Richard Sparling,et al.  Third Generation Biofuels via Direct Cellulose Fermentation , 2008, International journal of molecular sciences.

[30]  G. Lidén,et al.  A short review on SSF – an interesting process option for ethanol production from lignocellulosic feedstocks , 2008, Biotechnology for biofuels.

[31]  G. Fonty,et al.  Identification of Ruminococcus flavefaciens as the Predominant Cellulolytic Bacterial Species of the Equine Cecum , 1999, Applied and Environmental Microbiology.

[32]  J. Kopečný,et al.  The effect of yellow affinity substance on cellulases of Ruminococcus flavefaciens , 1997, Letters in applied microbiology.

[33]  T. Miller,et al.  Bioconversion of Cellulose to Acetate with Pure Cultures of Ruminococcus albus and a Hydrogen-Using Acetogen , 1995, Applied and environmental microbiology.

[34]  K. Joblin,et al.  The effect of cocultivation with hydrogen-consuming bacteria on xylanolysis byRuminococcus flavefaciens , 1994, Current Microbiology.

[35]  M. Wolin,et al.  Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium , 1977, Applied and environmental microbiology.

[36]  R. E. Hungate THE ANAEROBIC MESOPHILIC CELLULOLYTIC BACTERIA , 1950 .

[37]  P. Weimer Cellulose Degradation by Ruminal Microorganisms , 1992 .

[38]  A. Sijpesteijn On Ruminococcus flavefaciens, a cellulose-decomposing bacterium from the rumen of sheep and cattle. , 1951, Journal of general microbiology.