Hydrogen storage properties of new A3B2-type TiZrNbCrFe high-entropy alloy

[1]  B. Murty,et al.  Challenges in design and development of high entropy alloys: A thermodynamic and kinetic perspective , 2020 .

[2]  K. Edalati,et al.  Hydrogen storage in TiZrNbFeNi high entropy alloys, designed by thermodynamic calculations , 2020 .

[3]  Ping Chen,et al.  Materials for hydrogen-based energy storage – past, recent progress and future outlook , 2020, Journal of Alloys and Compounds.

[4]  K. Edalati,et al.  Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMnFeNi , 2020 .

[5]  Yuan Yuan,et al.  Study on the hydrogen storage properties of a TiZrNbTa high entropy alloy , 2020 .

[6]  K. Edalati,et al.  Mechanical Synthesis and Hydrogen Storage Characterization of MgVCr and MgVTiCrFe High‐Entropy Alloy , 2019, Advanced Engineering Materials.

[7]  M. Sørby,et al.  Hydrogen storage in high-entropy alloys with varying degree of local lattice strain , 2019, International Journal of Hydrogen Energy.

[8]  K. Edalati,et al.  Mechanochemistry of Metal Hydrides: Recent Advances † , 2019, Materials.

[9]  M. Sørby,et al.  Counting electrons - A new approach to tailor the hydrogen sorption properties of high-entropy alloys , 2019, Acta Materialia.

[10]  Kasper T. Møller,et al.  Hydrogen sorption in TiZrNbHfTa high entropy alloy , 2019, Journal of Alloys and Compounds.

[11]  W. Botta,et al.  Hydrogen-induced phase transition of MgZrTiFe0.5Co0.5Ni0.5 high entropy alloy , 2018 .

[12]  Swe-Kai Chen,et al.  Hydrogen storage of C14-CruFevMnwTixVyZrz alloys , 2017 .

[13]  Qing Chen,et al.  Database development and Calphad calculations for high entropy alloys: Challenges, strategies, and tips , 2017 .

[14]  U. Jansson,et al.  Superior hydrogen storage in high entropy alloys , 2016, Scientific Reports.

[15]  L. D. Faria,et al.  Technological forecasting of hydrogen storage materials using patent indicators , 2016 .

[16]  D. Miracle,et al.  A critical review of high entropy alloys and related concepts , 2016 .

[17]  Jian Lu,et al.  High-entropy alloy: challenges and prospects , 2016 .

[18]  A. G. McGregor,et al.  Predicting the formation and stability of single phase high-entropy alloys , 2016 .

[19]  Jerzy Bystrzycki,et al.  Microstructure and hydrogen storage properties of a TiZrNbMoV high entropy alloy synthesized using Laser Engineered Net Shaping (LENS) , 2014 .

[20]  T. Maeda,et al.  Cyclic stability test of AB2 type (Ti, Zr)(Ni, Mn, V, Fe)2.18 for stationary hydrogen storage in water contaminated hydrogen , 2013 .

[21]  Jerzy Bystrzycki,et al.  Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using Laser Engineered Net Shaping (LENS) , 2013 .

[22]  Liqun Ma,et al.  Structure and electrochemical hydrogen storage properties of A2B-type Ti–Zr–Ni alloys , 2012 .

[23]  Yong Zhang,et al.  Prediction of high-entropy stabilized solid-solution in multi-component alloys , 2012 .

[24]  J. Yeh,et al.  Hydrogen storage properties of multi-principal-component CoFeMnTixVyZrz alloys , 2010 .

[25]  B. Toby R factors in Rietveld analysis: How good is good enough? , 2006, Powder Diffraction.

[26]  L. Schlapbach,et al.  The activation of FeTi for hydrogen absorption , 1983 .

[27]  R. L. Cohen,et al.  Degradation of LaNi5 by temperature-induced cycling , 1980 .