SUBSTELLAR OBJECTS IN NEARBY YOUNG CLUSTERS (SONYC). IV. A CENSUS OF VERY LOW MASS OBJECTS IN NGC 1333

SONYC—Substellar Objects in Nearby Young Clusters—is a program to investigate the frequency and properties of young substellar objects with masses down to a few times that of Jupiter. Here we present a census of very low mass objects in the ~1 Myr old cluster NGC 1333. We analyze near-infrared spectra taken with Fiber Multi-Object Spectrograph/Subaru for 100 candidates from our deep, wide-field survey and find 10 new likely brown dwarfs with spectral types of M6 or later. Among them, there are three with M9 and one with early L spectral type, corresponding to masses of 0.006 to 0.02 M ☉, so far the lowest mass objects identified in this cluster. The combination of survey depth, spatial coverage, and extensive spectroscopic follow-up makes NGC 1333 one of the most comprehensively surveyed clusters for substellar objects. In total, there are now 51 objects with spectral type M5 or later and/or effective temperature of 3200 K or cooler identified in NGC 1333; 30-40 of them are likely to be substellar. NGC 1333 harbors about half as many brown dwarfs as stars, which is significantly more than in other well-studied star-forming regions, thus raising the possibility of environmental differences in the formation of substellar objects. The brown dwarfs in NGC 1333 are spatially strongly clustered within a radius of ~1 pc, mirroring the distribution of the stars. The disk fraction in the substellar regime is <66%, lower than for the total population (83%) but comparable to the brown dwarf disk fraction in other 2-3 Myr old regions.

[1]  David Lafreniere,et al.  SUBSTELLAR OBJECTS IN NEARBY YOUNG CLUSTERS (SONYC). II. THE BROWN DWARF POPULATION OF ρ OPHIUCHI , 2010, 1010.5801.

[2]  K. Rice,et al.  Protostars and Planets V , 2005 .

[3]  J. A. Caballero,et al.  Contamination by field late-M, L, and T dwarfs in deep surveys , 2008, 0805.4480.

[4]  Thomas P. Greene,et al.  Low-Mass Stars and Substellar Objects in the NGC 1333 Molecular Cloud , 2004 .

[5]  M. Janson,et al.  DISCOVERY OF AN ∼23 MJup BROWN DWARF ORBITING ∼700 AU FROM THE MASSIVE STAR HIP 78530 IN UPPER SCORPIUS , 2011, 1101.4666.

[6]  D. Padgett,et al.  On the circum(sub)stellar environment of brown dwarfs in Taurus , 2007, astro-ph/0701251.

[7]  E. Young,et al.  A Spitzer Census of the IC 348 Nebula , 2007, 0704.0203.

[8]  Michael C. Liu,et al.  Characterizing Young Brown Dwarfs Using Low-Resolution Near-Infrared Spectra , 2006, astro-ph/0611408.

[9]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[10]  David R. Alexander,et al.  THE LIMITING EFFECTS OF DUST IN BROWN DWARF MODEL ATMOSPHERES , 2001 .

[11]  P. Padoan,et al.  The “Mysterious” Origin of Brown Dwarfs , 2002, astro-ph/0205019.

[12]  Lynne A. Hillenbrand,et al.  The Spectroscopically Determined Substellar Mass Function of the Orion Nebula Cluster , 2004 .

[13]  Naoyuki Tamura,et al.  Fibre Multi-Object Spectrograph (FMOS) for the Subaru Telescope , 2010 .

[14]  L. Testi,et al.  Accretion in brown dwarfs: An infrared view , 2004 .

[15]  E. Schilbach,et al.  Study of the Per OB2 star forming complex II. Structure and kinematics , 2002 .

[16]  A Census of the Young Cluster IC 348 , 2003, astro-ph/0304409.

[17]  I. Bonnell,et al.  Gravitational fragmentation and the formation of brown dwarfs in stellar clusters , 2008, 0807.0460.

[18]  F. Allard,et al.  Evolutionary Models for Very Low-Mass Stars and Brown Dwarfs with Dusty Atmospheres , 2000 .

[19]  B. Reipurth,et al.  The Formation of Brown Dwarfs as Ejected Stellar Embryos , 2001, astro-ph/0103019.

[20]  R. Jayawardhana,et al.  Hotspots and a clumpy disc: variability of brown dwarfs and stars in the young σ Ori cluster , 2009, 0907.0476.

[21]  K. Černis Interstellar extinction in the vicinity of the reflection nebula NGC 1333 in Perseus , 1990 .

[22]  Patrick J. Lowrance,et al.  Discovery of a Very Young Field L Dwarf, 2MASS J01415823-4633574 , 2005 .

[23]  M. Tamura,et al.  SUBSTELLAR OBJECTS IN NEARBY YOUNG CLUSTERS (SONYC): THE BOTTOM OF THE INITIAL MASS FUNCTION IN NGC 1333 , 2009, 0907.2243.

[24]  Matthew Bate,et al.  Stellar, brown dwarf and multiple star properties from hydrodynamical simulations of star cluster formation , 2008, 0811.0163.

[25]  H. Bouy,et al.  Young T-dwarf candidates in IC 348 , 2009, 0909.0917.

[26]  K. Mužić,et al.  SUBSTELLAR OBJECTS IN NEARBY YOUNG CLUSTERS (SONYC). III. CHAMAELEON-I , 2011, 1103.0978.

[27]  T. Henning,et al.  The Decay of Accreting Triple Systems as Brown Dwarf Formation Scenario , 2005, astro-ph/0501075.

[28]  L. Hartmann,et al.  Disks around Brown Dwarfs in the σ Orionis Cluster , 2008, 0808.0471.

[29]  P. Roche,et al.  Infrared spectroscopy and analysis of brown dwarf and planetary mass objects in the Orion nebula cluster , 2008, 0810.3584.

[30]  Coryn A. L. Bailer-Jones,et al.  Discovery of Young, Isolated Planetary Mass Objects in the σ Orionis Star Cluster , 2000 .

[31]  David Lafreniere,et al.  THE DIRECTLY IMAGED PLANET AROUND THE YOUNG SOLAR ANALOG 1RXS J160929.1 − 210524: CONFIRMATION OF COMMON PROPER MOTION, TEMPERATURE, AND MASS , 2010, 1006.3070.

[32]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .

[33]  D. T. Jaffe,et al.  Young, Low-Mass Brown Dwarfs with Mid-Infrared Excesses , 2006, astro-ph/0602249.

[34]  R. Jayawardhana,et al.  Evolution of Brown Dwarf Disks: A Spitzer Survey in Upper Scorpius , 2007, astro-ph/0701703.

[35]  K. Covey,et al.  A SPECTROSCOPIC STUDY OF YOUNG STELLAR OBJECTS IN THE SERPENS CLOUD CORE AND NGC 1333 , 2009, 0904.1244.

[36]  M. McElwain,et al.  Resolved Spectroscopy of M Dwarf/L Dwarf Binaries. I. DENIS J220002.05−303832.9AB , 2005, astro-ph/0510579.

[37]  Laird M. Close,et al.  EVIDENCE AGAINST AN EDGE-ON DISK AROUND THE EXTRASOLAR PLANET, 2MASS 1207 b AND A NEW THICK-CLOUD EXPLANATION FOR ITS UNDERLUMINOSITY,, , 2011, 1103.1880.

[38]  L. Hartmann,et al.  The Initial Mass Function in the Taurus Star-forming Region , 2002 .

[39]  K. Luhman The Stellar Population of the Chamaeleon I Star-forming Region , 2007, 0710.3037.

[40]  M. Osorio,et al.  Near-infrared low-resolution spectroscopy of Pleiades L-type brown dwarfs , 2010, 1005.3249.

[41]  Ewan Cameron,et al.  On the Estimation of Confidence Intervals for Binomial Population Proportions in Astronomy: The Simplicity and Superiority of the Bayesian Approach , 2010, Publications of the Astronomical Society of Australia.

[42]  C. Marois,et al.  The highest resolution near infrared spectrum of the imaged planetary mass companion 2M1207 b , 2010 .

[43]  Eric Mamajek,et al.  The Planetary Mass Companion 2MASS 1207–3932B: Temperature, Mass, and Evidence for an Edge-on Disk , 2006, astro-ph/0610550.

[44]  M. Meyer,et al.  An Electronic Publication Dedicated to Early Stellar Evolution and Molecular Clouds Evidence for a Turnover in the Initial Mass Function of Low–mass Stars and Substellar Objects: Analysis from an Ensemble of Young Clusters , 2022 .

[45]  R. Jayawardhana,et al.  Exploring brown dwarf disks : A 1.3 mm survey in taurus , 2006, astro-ph/0603619.

[46]  Michael C. Liu,et al.  Subtle Signatures of Multiplicity in Late-type Dwarf Spectra: The Unresolved M8.5 + T5 Binary 2MASS J03202839–0446358 , 2008, 0803.0295.

[47]  T. Preibisch,et al.  Constraints on the IMF and the brown dwarf population of the young cluster IC 348 , 2003 .

[48]  F. Allard,et al.  Evolutionary models for low-mass stars and brown dwarfs: uncertainties and limits at very young ages , 2002 .

[49]  Hubble Space Telescope NICMOS Observations of NGC 1333: The Ratio of Stars to Substellar Objects , 2006, astro-ph/0611501.

[50]  B. Swift,et al.  Discovery of an M9.5 Candidate Brown Dwarf in the TW Hydrae Association: DENIS J124514.1–442907 , 2007, 0709.3290.

[51]  Royal Observatory of Edinburgh,et al.  Consistent Simulations of Substellar Atmospheres and Nonequilibrium Dust Cloud Formation , 2008, 0801.3733.

[52]  John T. Rayner,et al.  An Infrared Spectroscopic Sequence of M, L, and T Dwarfs , 2004, astro-ph/0412313.

[53]  M. Robberto,et al.  The low-mass initial mass function in the Orion nebula cluster based on HST/NICMOS III imaging , 2011, 1108.5581.

[54]  D. Padgett,et al.  THE SPITZER c2d LEGACY RESULTS: STAR-FORMATION RATES AND EFFICIENCIES; EVOLUTION AND LIFETIMES , 2008, 0811.1059.

[55]  R. A. Gutermuth,et al.  Spitzer Observations of NGC 1333: A Study of Structure and Evolution in a Nearby Embedded Cluster , 2007, 0710.1860.

[56]  The Luminosity and Mass Function of the Trapezium Cluster: From B Stars to the Deuterium-burning Limit , 2002, astro-ph/0203122.

[57]  A. Whitworth,et al.  The properties of brown dwarfs and low-mass hydrogen-burning stars formed by disc fragmentation , 2008, 0810.1687.

[58]  U. Toronto,et al.  Lithium Depletion of Nearby Young Stellar Associations , 2008, 0808.3584.

[59]  J. Alves,et al.  Near-Infrared Imaging of Embedded Clusters: NGC 1333 , 1996 .

[60]  M. Juvela,et al.  THE POWER SPECTRUM OF TURBULENCE IN NGC 1333: OUTFLOWS OR LARGE-SCALE DRIVING? , 2009, 0910.1384.

[61]  A. Scholz,et al.  New brown dwarfs in the south part of the Upper Scorpius Association , 2011, 1108.1309.

[62]  R. Jayawardhana,et al.  Infrared Spectroscopy of the Ultra-Low-Mass Binary Oph 162225–240515 , 2006, astro-ph/0610601.

[63]  Philip W. Lucas,et al.  A population of very young brown dwarfs and free‐floating planets in Orion , 2000 .