Exponentiable morphisms, partial products and pullback complements

In a category K with finite limits, the exponentiability of a morphisms s is (rather easily) characterised in terms of K admitting partial products (essentially those of Pasynkov) over s; and that of a monomorphism is characterised in terms of the new concept of a pullback complement (a universal construction of a pullback diagram whose top and right sides are given). Then, characterisations, previously given by the first author for the category Sp of topological spaces, of the notions of totally reflective subcategory and of hereditary factorisation system are shown to be instances of simple results on adjointness and factorisations.

[1]  Adjungierte Dreiecke, Colimites und Kan-Erweiterungen , 1975 .

[2]  Walter Tholen,et al.  Factorizations, Localizations, and the Orthogonal Subcategory Problem , 1983 .

[3]  P. Collins,et al.  CONNEXION PROPERTIES AND FACTORISATION THEOREMS , 1977 .

[4]  L. Lewis Open maps, colimits, and a convenient category of fibre spaces , 1985 .

[5]  Zhu Sheng-lin On the equivalences of quotient category mod-(R,𝔣) with module category mod-s , 1988 .

[6]  Peter Freyd,et al.  Aspects of topoi , 1972, Bulletin of the Australian Mathematical Society.

[7]  H. Herrlich,et al.  Dispersed Factorization Structures , 1979, Canadian Journal of Mathematics.

[8]  Ronald Brown,et al.  Spaces of partial maps, fibred mapping spaces and the compact-open topology , 1978 .

[9]  Jacques Penon,et al.  Sur les quasi-topos , 1977 .

[10]  S. Niefield,et al.  Cartesianness: topological spaces, uniform spaces, and affine schemes , 1982 .

[11]  S. Niefield Cartesian inclusion: locales and topgses ∗ , 1981 .

[12]  H. Kreowski,et al.  Pushout-Properties: An analysis of gluing constructions for graphs , 1979 .

[13]  Pullbacks in Regular Categories , 1973, Canadian Mathematical Bulletin.

[14]  Horst Herrlich,et al.  Category theory , 1979 .

[15]  Roy Dyckhoff,et al.  Total reflections, partial products, and hereditary factorizations , 1984 .

[16]  Dieter Pumplün Universelle und spezielle Probleme , 1972 .

[17]  F. Cagliari Epireflective and not totally reflective subcategories of top , 1986 .