New Processable Phenanthridinone‐Based Polymers for Organic Solar Cell Applications

DOI: 10.1002/aenm.201502094 anionic form under the alkylation conditions. This same trend was observed for the alkylation of pyrido[2,3,4,5lmn ]phenanthridine under basic conditions. [ 24 ] Owing to the different functional groups, M1 and M2 can be easily separated on a chromatographic column or purifi ed by recrystallization. To obtain low band gap and processable materials, these monomers were copolymerized with 2,5-bis(2-octyldodecyl)-3,6-di(thien-2-yl)pyrrolo[3,4c ]pyrrole1,4-dione ( M3 ) (see the Supporting Information). [ 25 ]

[1]  Yuhang Liu,et al.  Efficient Low‐Bandgap Polymer Solar Cells with High Open‐Circuit Voltage and Good Stability , 2015 .

[2]  S. Beaupré,et al.  Thieno, Furo, and Selenopheno[3,4‐c]pyrrole‐4,6‐dione Copolymers: Air‐Processed Polymer Solar Cells with Power Conversion Efficiency up to 7.1% , 2015 .

[3]  Kealan J. Fallon,et al.  A Nature-Inspired Conjugated Polymer for High Performance Transistors and Solar Cells , 2015 .

[4]  Jianqi Zhang,et al.  A lactam building block for efficient polymer solar cells. , 2015, Chemical communications.

[5]  Jin Young Kim,et al.  Small‐Bandgap Polymer Solar Cells with Unprecedented Short‐Circuit Current Density and High Fill Factor , 2015, Advanced materials.

[6]  M. Leclerc,et al.  Conjugated Polymers à la Carte from Time-Controlled Direct (Hetero)Arylation Polymerization. , 2015, ACS macro letters.

[7]  M. McGehee,et al.  Minimal Long-Term Intrinsic Degradation Observed in a Polymer Solar Cell Illuminated in an Oxygen-Free Environment , 2015 .

[8]  Gabriele Bianchi,et al.  “All That Glisters Is Not Gold”: An Analysis of the Synthetic Complexity of Efficient Polymer Donors for Polymer Solar Cells , 2015 .

[9]  Stephen Z. D. Cheng,et al.  Patternable Conjugated Polymers with Latent Hydrogen-Bonding on the Main Chain , 2014 .

[10]  He Yan,et al.  Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells , 2014, Nature Communications.

[11]  F. Goubard,et al.  Ternary blends for polymer bulk heterojunction solar cells , 2014 .

[12]  Harald Hoppe,et al.  Chlorine-free processed high performance organic solar cells , 2014 .

[13]  P. Yu,et al.  High-efficiency polymer solar cells by blade coating in chlorine-free solvents , 2014 .

[14]  S. Beaupré,et al.  Highly efficient thieno[3,4-c]pyrrole-4,6-dione-based solar cells processed from non-chlorinated solvent , 2014 .

[15]  Shi-jian Su,et al.  Three pyrido[2,3,4,5-lmn]phenanthridine derivatives and their large band gap copolymers for organic solar cells , 2014 .

[16]  Fei Huang,et al.  Non-halogenated solvents for environmentally friendly processing of high-performance bulk-heterojunction polymer solar cells , 2013 .

[17]  Christoph J. Brabec,et al.  Organic Ternary Solar Cells: A Review , 2013, Advanced materials.

[18]  Wei You,et al.  Organic Solar Cells beyond One Pair of Donor-Acceptor: Ternary Blends and More. , 2013, The journal of physical chemistry letters.

[19]  J. Fréchet,et al.  Linear side chains in benzo[1,2-b:4,5-b']dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers direct self-assembly and solar cell performance. , 2013, Journal of the American Chemical Society.

[20]  A. Heeger,et al.  Transferable graphene oxide by stamping nanotechnology: electron-transport layer for efficient bulk-heterojunction solar cells. , 2013, Angewandte Chemie.

[21]  Alexander Lange,et al.  Inkjet printed solar cell active layers prepared from chlorine-free solvent systems , 2013 .

[22]  Christoph J. Brabec,et al.  Determining the coating speed limitations for organic photovoltaic inks , 2013 .

[23]  K. Ho,et al.  Materials for the active layer of organic photovoltaics: ternary solar cell approach. , 2013, ChemSusChem.

[24]  Yongfang Li,et al.  High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive , 2012 .

[25]  M. Leclerc,et al.  Synthesis of 5-alkyl[3,4-c]thienopyrrole-4,6-dione-based polymers by direct heteroarylation. , 2012, Angewandte Chemie.

[26]  Myung‐Gil Kim,et al.  Thieno[3,4-c]pyrrole-4,6-dione-based polymer semiconductors: toward high-performance, air-stable organic thin-film transistors. , 2011, Journal of the American Chemical Society.

[27]  Ronn Andriessen,et al.  Technology development for roll-to-roll production of organic photovoltaics , 2011 .

[28]  T. Kanbara,et al.  Polycondensation of Dibromofluorene Analogues with Tetrafluorobenzene via Direct Arylation , 2011 .

[29]  H. Sirringhaus,et al.  Thieno[3,2-b]thiophene-diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. , 2011, Journal of the American Chemical Society.

[30]  Zhenan Bao,et al.  Solvent additives and their effects on blend morphologies of bulk heterojunctions , 2011 .

[31]  Ryo Takita,et al.  Palladium-catalyzed dehydrohalogenative polycondensation of 2-bromo-3-hexylthiophene: an efficient approach to head-to-tail poly(3-hexylthiophene). , 2010, Journal of the American Chemical Society.

[32]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[33]  Ye Tao,et al.  A thieno[3,4-c]pyrrole-4,6-dione-based copolymer for efficient solar cells. , 2010, Journal of the American Chemical Society.

[34]  S. Beaupré,et al.  Highly efficient organic solar cells based on a poly(2,7-carbazole) derivative , 2009 .

[35]  M. Leclerc,et al.  A High-Mobility Low-Bandgap Poly(2,7-carbazole) Derivative for Photovoltaic Applications , 2009 .

[36]  Weihua Tang,et al.  Synthesis, photophysics, theoretical modeling, and electroluminescence of novel 2,7‐carbazole‐based conjugated polymers with sterically hindered structures , 2008 .

[37]  Ye Tao,et al.  Toward a rational design of poly(2,7-carbazole) derivatives for solar cells. , 2008, Journal of the American Chemical Society.

[38]  Christoph J. Brabec,et al.  Organic Field‐Effect Devices as Tool to Characterize the Bipolar Transport in Polymer‐Fullerene Blends: The Case of P3HT‐PCBM , 2007 .

[39]  Mario Leclerc,et al.  A Low‐Bandgap Poly(2,7‐Carbazole) Derivative for Use in High‐Performance Solar Cells , 2007 .

[40]  P. Smith The Schmidt Reaction: Experimental Conditions and Mechanism , 1948 .

[41]  L. P. Walls 337. Researches in the phenanthridine series. Part IV. Synthesis of plasmoquin-like derivatives , 1935 .